
Urban Subwatershed Restoration Manual Series

page 7	USDA NRCS
page 19	www.metrokc.gov
page 33	Fairfax County, VA
page 38	USDA NRCS
page 38	Eric Livingston
page 39	Roger Bannerman
page 39	http://in.water.usgs.gov/river/
page 43	USDA NRCS
page 44	Ft. Worth Department of Environmental Management
page 45	www.cabq.gov/solidwaste/greenwst.html
page 50	www.cityschools.com/walkergrant/fsts/aboutprogram.html

Foreword

Foreword

Manual 1: An Integrated Approach to Restore Small Urban Watersheds

Manual 2: Methods to Develop Restoration Plans for Small Urban Watersheds Manual 4: Urban Stream Repair Practices Manual 6: Discharge Prevention Practices

ManualaWWyelel,

Manual 5: Riparian Management Practices Manual 10: The Unified Stream Assessment (USA): A User's Manual

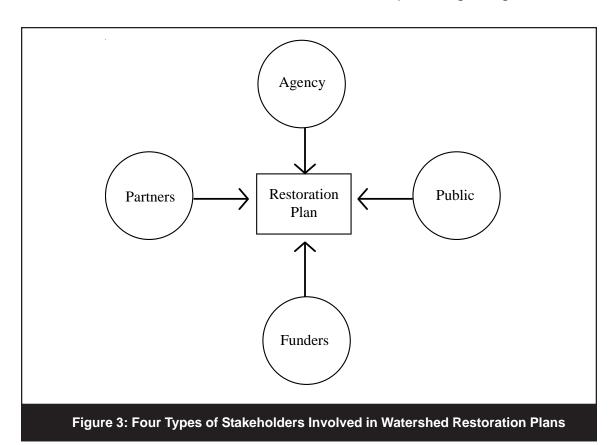
Manual 9: Municipal Practices and Programs

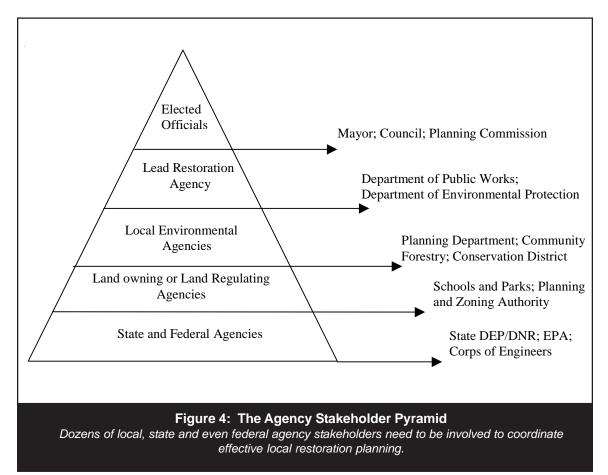
Manual 11: The Unified Subwatershed and Site Reconnaissance (USSR): A User's Manual

Chapter 1: Organizing to Restore Urban W

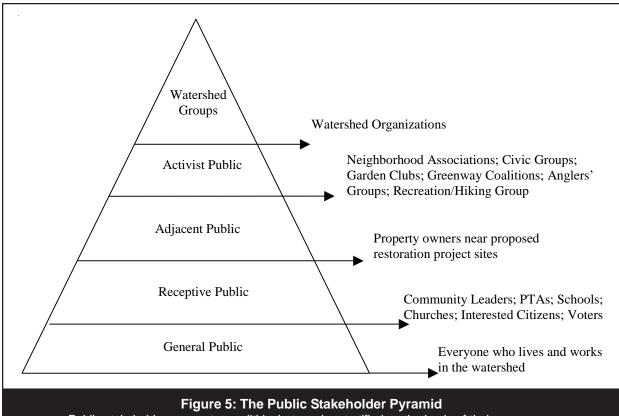
Chapter 4: Range of Available Subwatershed Restoration Practices

Chapter 1: Organizing to R

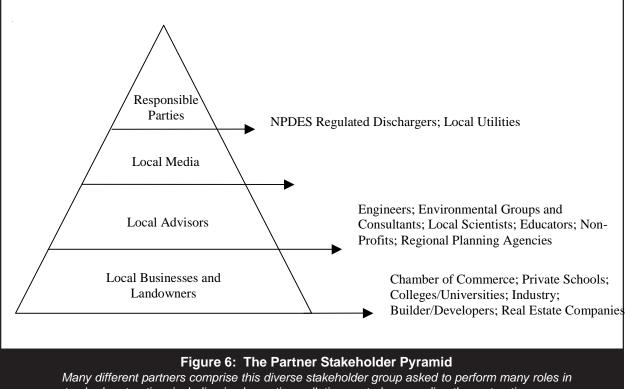

Chapter 1: Organizing to Restore Urban Watersheds


Table 1: Selion4i0Tc Ø6 Tw 1541d037 00931 0T

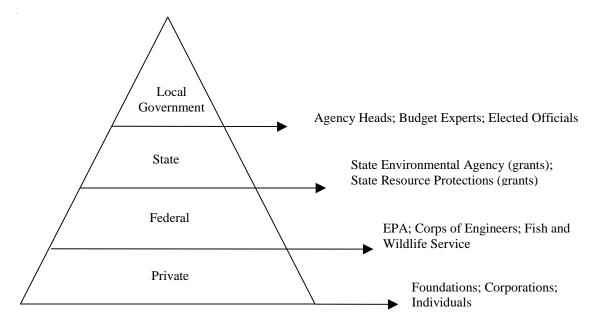
Public Demand for Better Local Environment


1.3 Many Different Goals Guide Urban Watershed Restoration

Growth in Urban Watershed Organizations Chapter 1: Organizing to Restore Urban Watersheds



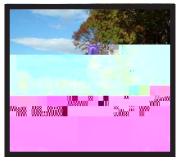
The Public



Public stakeholders are not monolithic, but can be stratified on the basis of their awareness, stewardship activities, and interest in participating in the local watershed restoration process.

Many different partners comprise this diverse stakeholder group asked to perform many roles in watershed restoration, including implementing pollution controls, spreading the restoration message, providing expertise, and integrating restoration goals into their normal operations.

Funders



1.5 Organizing Stakeholders Into Action

Chapter 1: Organizing to Restore Urban Watersheds

Chapter 2: The Alteration of Urban Subwatersheds

2.4 Fragmentation of Natural Area Remnants

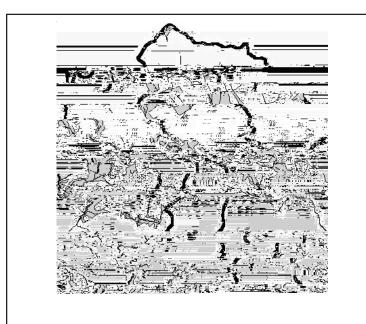
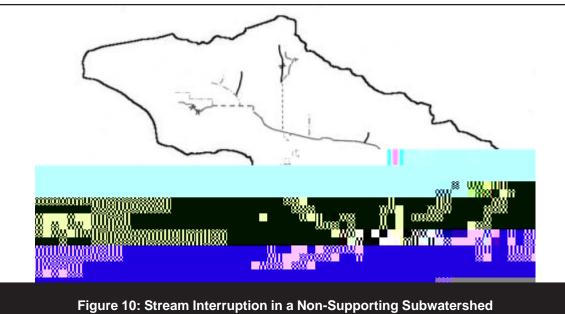
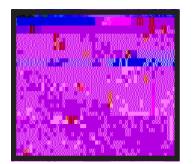



Figure 9: Distribution of Natural Area Remnants in a Non-Supporting Subwatershed


Although Watts Branch (Rockville, MD) has nearly 30% IC, it still contains significant forest and wetland fragments in its subwatershed, many of which are found in close proximity to the stream corridor.

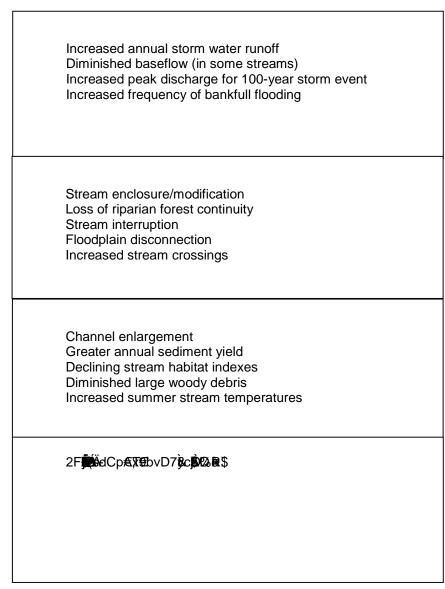
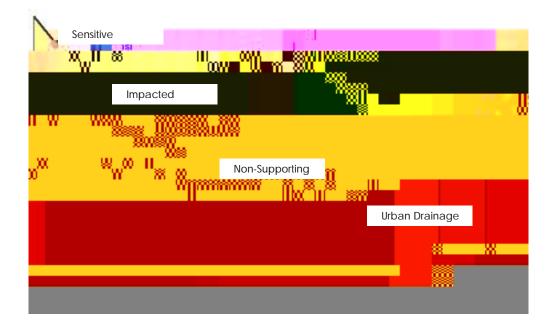
2.5 Interruption of the Stream Corridor

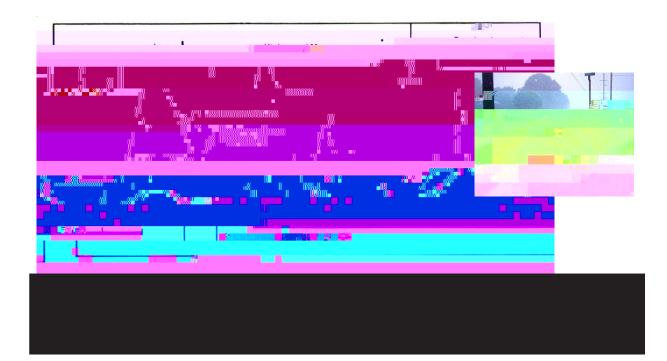
This stream network of this Baltimore (MD) subwatershed has been extensively interrupted by road crossings, extended culverts, channelization and other engineering "improvements" over many decades. Most first order streams are not shown on the map because they have been enclosed by storm drains. Stream interruption is an important factor in determining fish passage, channel erosion, and aquatic habitat suitability.

2.6 Encroachment and Expansion in the Flood Plain

Chapter 2: The Alteration of Urban Subwatersheds

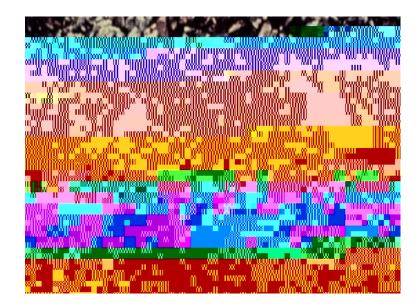
Chapter 3: Impacts of Urbanization on Streams


Figure 11: Five Groups of Stream Impacts Associated with Urban Subwatersheds

3.1 Changes to Stream

Hydrology



3.2 Physical Alteration of the

3.3 Degradation of Stream Habitat

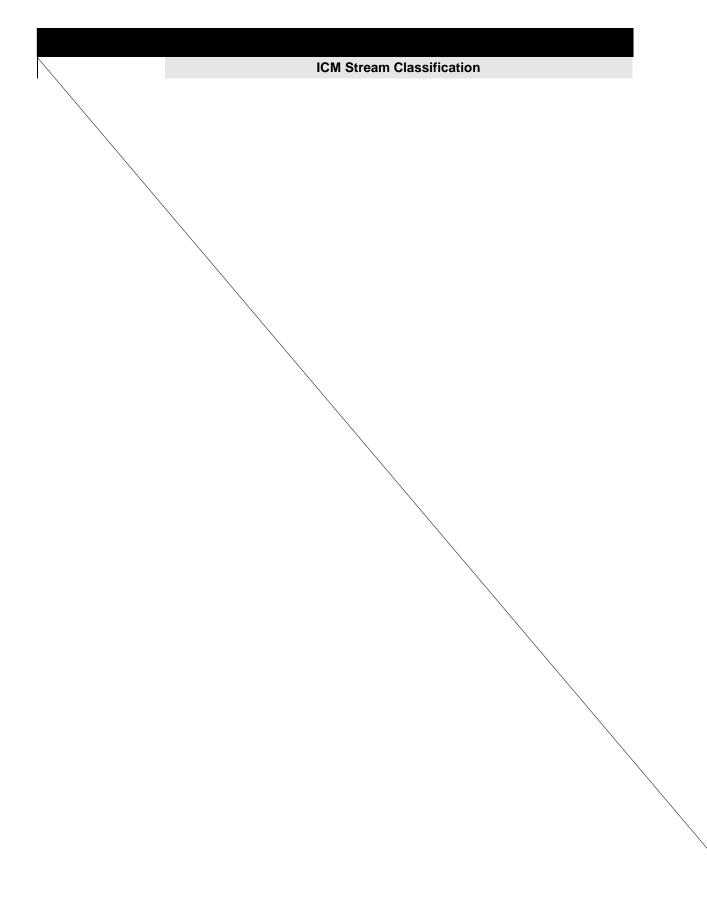
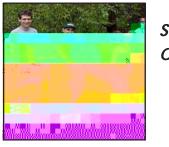
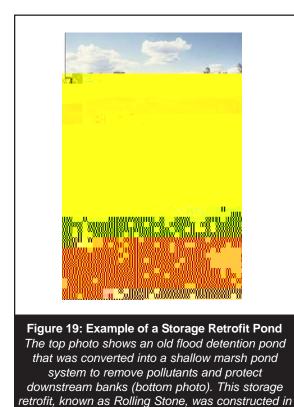

3.4 Decline in W

Table 5: Water Quality Predictions According to the ICM							
Water Quality Indicator	ICM Stream Classification						
	Impacted	Non-Supporting	Urban Drainage				
Annual Nutrient Load ^a	1 to 2 times higher than rural background	2 to 4 times higher than rural background	4 to 6 times higher than rural background				
Violations of Bacteria Standards ^b	Frequent violations during wet weather	Continuous violations during wet weather; Episodic violations during dry weather	Continuous violations during wet weather, frequent violations during dry weather				
Aquatic Life Toxicity [°]	Acute toxicity rare	Moderate potential for acute toxicity during some storms and spills	High potential for acute toxicity during dry and wet weather				
Contaminated Sediments	Sediments enriched but not contaminated	Sediment contamination likely, potential risk of bioaccumulation	Contamination should be presumed				
Fish Advisories ^d	Rare	Potential risk of bioaccumulation	Should be presumed				


Bacterial Contamination

Aquatic Life Toxicity

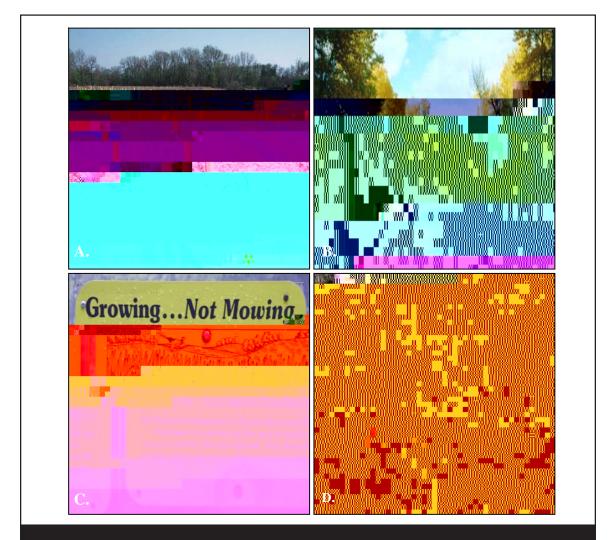


4.2 Stream Repair Practices

On-site Residential Retrofits

Stream Cleanups

the late 1980s and treats about 75 acres of upstream drainage.


Parks or Greenways

Active Reforestation

Upstream Retrofit: Wet Extended Detention Pond			
Figure 21: Example The diagram shows the combin	e of Comprehensive Stream Restoration Approach ation of stream restoration techniques employed to restore Wheaton		

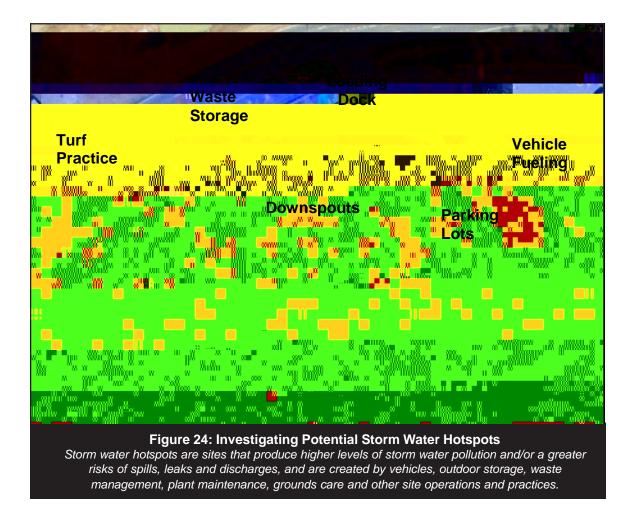
Natural Regeneration

Riparian Wetland Restoration


Figure 22: Four Strategies to Establish Vegetation in the Riparian Area

The strategy to establish riparian vegetation depends on the condition of the stream corridor, its ownership and intended management use. Strategies include active reforestation (Panel A), more limited park/greenway plantings (Panel B), natural regeneration (Panel C) and restoration of riparian wetlands/forests (Panel D).

4.4 Discharge Prevention


Management of Natural Area Remnants

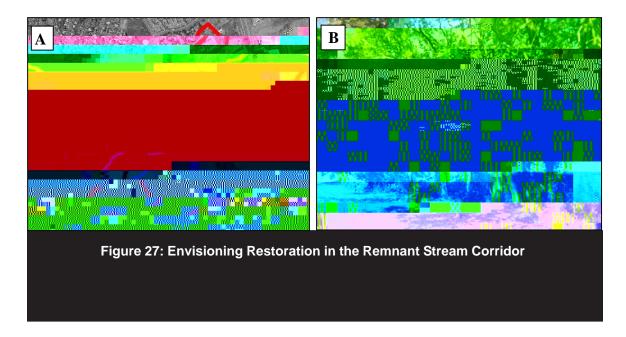
Residential Stewardship

4.6 Pollution Source Control Practices

Figure 23: Pollution Source Control Opportunities in Residential Neighborhoods Nearly two dozen pollution source control opportunities can exist within a residential neighborhood. They can be systematically evaluated by looking at lawns and yard practices, rooftop connections, the

4.7 Municipal Practices and Programs

Stewardship of Public Land


	Si Si	ubwatershed	Impervious Co	ver	I
Restoration Practice	10 to 25%	25 to 40%	40 to 60%	60 to 100%	
	Vater Retrofit 'Z				-6.6(3-Residen)1J/
Figure 25: General Feas	sibility of Retr	ofit Practices	at Different		
	s of Subwaters on the subwate oplied. Actual res widely impleme	shed IC ershed conditions storation potentia ent some restora	s where the resto al should always tion techniques i	be is often	

Subwatershed Restoration Goals	Percent Subwatershed Impervious Cover							
Subwalersneu Kestoration Goals	10 to 25	25 to 40	40 to 60	60 to 100				
Water Quality								
Reduce pollutants of concern	1	i	1					
Prevent illegal discharges/spills	_	I.	1	_				
Meet water quality standards	1	—	'	Ê				
Reduce sediment contamination	1	I	—	Ê				
Allow water contact recreation	1			Ê				

.

Restoration Goals for Urban Drainage Subwatersheds

Chapter 5: Envisioning Restoration

5.2 Existing Storm Water Infrastructure Chapter 5: Envisioning Restoration

Figure 29: Envisioning Restoration on Open Municipal Lands

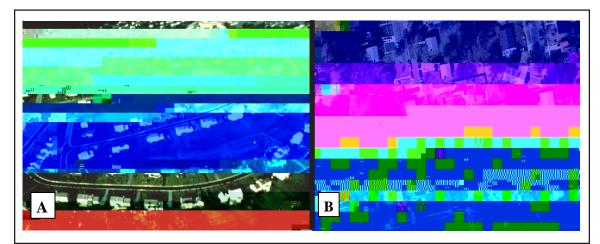

Portions of open municipal land are often good candidates for locating restoration practices, particularly along the property margins. Parks, schools and ballfields (shown in photo) are always worth evaluating in any subwatershed.

Figure 33: Envisioning Restoration for Storm Water Hotspots

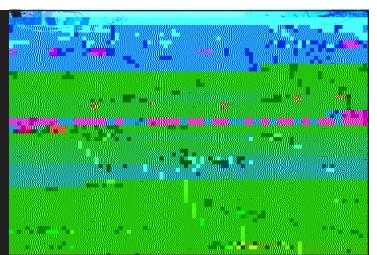
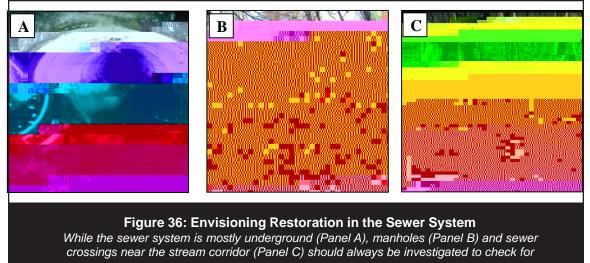

Storm water hotspots are very hard to find, given their small size and uneven distribution in most urban subwatersheds. Field investigations are almost always needed to confirm locations of severe hotspots, although analysis of business or permit databases can be used to narrow the search.

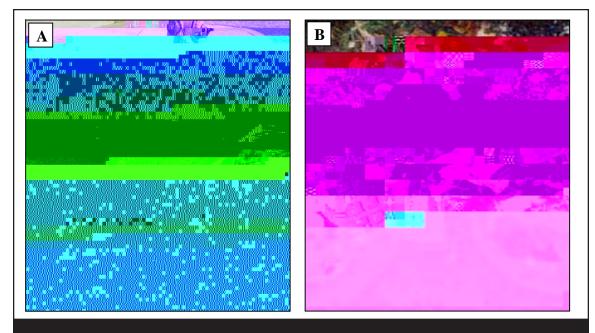
Figure 34: Envisioning Restoration in Residential Neighborhoods

Each residential neighborhood has its own distinctive character, based on its age, lot size, vegetative cover and housekeeping. These characteristics greatly influence opportunities for residential source control, which is evident when a large lot suburban neighborhood (Panel A) is compared to small lot urban neighborhood (Panel B).

Figure 35: Envisioning Restoration on Large Parcels of Institutional Land Institutions such as this college campus, may have unused land on their property that may be suitable for locating subwatershed restoration practices.



Chapter 5: Envisioning Restoration


5.10 The Sewer System

5.11 Streets and Storm Drain Inlets

5.12 Summary

potential sewage leaks and discharges.

Figure 37: Envisioning Restoration on Streets and Storm Drain Inlets Pollutants and trash can accumulate on street surfaces and curbs (Panel A) or within storm drain catch basins and sumps (Panel B). Street sweeping and catch basin cleanouts may be the last chance to remove these pollutants in highly urban subwatersheds with few other restoration options.

Chapter 6: A Framework for Small W

Chapter 6: A Framework for Small Watershed Restoration

Figure 39: Detailed Steps and Tasks Involved in the Restoration Planning Process Each step in the planning process usually has its own associated desktop analysis, field

Step 3: Evaluate Restoration Potential

Step 4: Conduct Detailed Restoration Assessment

Step 6: Determine Whether Subwatershed Plan Meets Watershed Goals Step 7: Implement Plan

Step 8: Measure Improvements Over Time

Summary

Chapter 6: A Framework for Small Watershed Restoration

3. Bankfull Flooding Frequency

C: Derivation of ICM Predictions for Physical Alteration of the Urban Stream Corridor

5. Riparian Forest Continuity

4. Stream Enclosure/Modification

8. Sediment Supply to Stream

9. Typical Stream Habitat Score

10. Presence of Large Woody Debris

13. Exceedance of Bacteria Standards

16. Trash and Debris

17. Other Storm Water Pollutants

Appendix A: Derivation of Predictions for the Impervious Cover Model

20. F Deriv0/S2 gsp.a f12 0 \$ and UDs F

22. Riparian Plant Diversity

Appendix B: Organization of Restoration Technique Profile Sheets for the Manual Series

Manual 3: Storm Water Retrofit Practices Manual 4: Stream Repair Practices

Storage Retrofit Techniques

Stream Cleanup Techniques

Stream Repair Techniques

On-site Non-Residential Retrofit Techniques

On-site Residential Retrofit Techniques

Manual 9: Municipal Practices and Programs

Techniques for Streets and Storm Drains

Best Practices for New Construction

Inspection and Enforcement

Appendix B: Organization of Restoration Technique Profile Sheets