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ABSTRACT 

One of the major functions of wetlands is to store water for gradual release to 
surface and ground-water bodies. It is generally assumed that wetlands reduce flooding, 
increase low flows, and serve as recharge areas for ground water. However, there have 
not been systematic studies to quantify the influence of wetlands on flooding and low 
flows. This research was initiated to investigate the hydrologic functions of wetlands in 
Illinois based on available streamflow records. The research was designed to answer the 
more general question, "how does the presence or absence of variable size wetlands in a 
watershed influence streamflow?" 

Streamflow records from 30 gaging stations monitoring watersheds with variable 
wetland areas were analyzed to assess the influence of wetlands on streamflow. The main 
objective of the analysis was to determine if streamflow parameters of streams draining 
watersheds with varying percentage of wetland areas were related to the percentage of 
wetlands in the watersheds. The streamflow parameters analyzed included peakflow, 
floodflow volume, and low flow. From the results of this analysis, in general, it can be 
concluded that peakflow and floodflow volume decrease, and low flows increase with 
increasing percentage of wetlands in the watershed. The influence of wetlands was more 
noticeable on peakflow and low flow than on floodflow volume. F Tc 84329cgae c8 395.28l Tc 1.039 Tw w volum analysnd1.Tj
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stream adjoining a wetland than for a stream not adjoining a wetland. As a result, a 
significant difference will exist between the flow characteristics of a stream adjacent to a 
wetland and one not adjoining a wetland. 

Another major influence that wetlands exert on streamflow is the flood storage 
capacity they provide. Since most wetlands are located in depressions and poorly drained 
areas, they provide significant storage potential. By storing runoff from adjoining areas, 
wetlands retard or reduce the amount of runoff that reaches stream channels. Therefore 
depending on initial conditions, wetland areas could significantly affect the streamflow. 

The presence of wetlands in a watershed may also result in low-flow augmentation 
in streams. In wetland areas, water stored in surficial depressions and underground is 
gradually released to adjoining streams during periods of low flows. This generally results 
in higher low-flow conditions for streams that drain areas containing wetlands. 

One of the parameters that can be used to characterize and distinguish watersheds 
containing different areas of wetlands is the ratio of wetland area to the total drainage area 
of the watershed. The major objective of this study, therefore, was to investigate 
streamflow records in Illinois and then relate various streamflow parameters to the 
percentage of wetlands in the watershed. Although it is generally accepted that wetlands 
reduce streamflow peaks and increase low flows, this generalized concept may not always 
be true. The hydrologic response of wetlands may vary depending on geographic location, 
storm intensity and duration, and season of the year. Because of significant regional and 
seasonal differences in Illinois, it is important to ascertain if the influence of wetlands 
varies between regions and by season. This research effort has attempted to address 
issues related to the regional and seasonal influence of wetlands on streamflow in Illinois. 
However, because of the small number of gaging stations in the different regions, the 
regional analysis needs to include more stations in the analysis. 
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streamflow in Wisconsin and concluded that flood peaks may be as much as 80 percent 
lower in basins with much lake and wetland area. Eli and Rauch (1982), in a study of two 
wetland watersheds in northern West Virginia, concluded that wetlands had little effect on 
peakflows or low flows of the studied watersheds. Skaggs and Broadhead (1982) studied 
the impact of drainage on runoff volume and peakflow using the model DRAINMOD. 
They concluded that subsurface tile drainage decreased the runoff volume and peakflow 
values. 

Ogawa and Male (1983) studied the role of wetlands on streamflow in 
Massachusetts and found that peakflow increased with decreasing wetland percentage in 
the watershed. Demissie et al. (1983) studied the upper Kankakee and Iroquois Rivers in 
Illinois and Indiana. Significant wetlands were present along the upper Kankakee River 
and absent along the Iroquois River. They found that a 50-year flood in the Iroquois 
River was almost twice as great as a 50-year flood in the upper Kankakee River for the 
same drainage area. On the other hand, the 7-day, 10-year low flow for the upper 
Kankakee River was more than ten times of that in the Iroquois River for the same 
drainage area. 

It was mentioned previously that it is generally accepted that wetlands reduce 
streamflow peaks and increase low flows. This function of wetlands is attributed to their 
ability to store floodwater during storm events for release later. However, this generalized 
concept may not always be true as illuminatedctTc (t)Tj
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Table 1. Information on Streamflow Gaging Stations Used in the Study 

Streamflow ID Drainage area Wetland Period 
station number Stream name (sqmi) (percent) of record 

03336645 1 Middle Fork Vermilion 428.00 1.34 1979-1988 
03336900 2 Salt Fork River 131.10 0.22 1960-1988 
03379500 3 Little Wabash 1118.90 1.06 1915-1988 
03380500 4 Skillet Fork 457.83 4.04 1929-1988 
03382100 5 South Fork Saline 145.10 9.29 1966-1988 
03384450 6 Lusk Creek 42.40 0.47 1969-1988 
05466500 7 Edwards River 440.30 1.08 1935-1988 
05469000 8 . Henderson Creek 430.30 0.82 1935-1988 
05495500 9 Bear Creek 345.20 1.87 1944-1988 
05532000 10 Addison Creek 22.90 0.76 1952-1988 
05534500 11 North Branch Chicago 19.50 4.41 1953-1988 
05536000 12 North Branch Chicago 98.10 3.52 1951-1988 
05536275 13 Thorn Creek 102.90 8.64 1947-1988 
05539900 14 West Branch DuPage 27.90 6.06 1961-1988 
05540095 15 West Branch DuPage 92.30 7.53 1969-1988 
05550500 16 Poplar Creek 35.50 7.28 1952-1988 
05551700 17 Blackberry Creek 69.60 4.19 1961-1988 
05568800 18 Indian Creek 62.20 0.47 1960-1988 
05570370 19 Big Creek 40.70 8.43 1972-1988 
05570380 20 Slug Run 7.10 13.68 1975-1988 
05570910 21 Sangamon 237.70 0.80 1979-1988 
05585000 22 La Moine 1281.80 2.27 1921-1988 
05591200 23 Kaskaskia 468.90 0.87 1971-1988 
05593520 24 Crooked Creek 251.60 5.80 1975-1988 
05594450 25 Silver Creek 152.49 4.17 1967-1988 
05594800 26 Silver Creek 460.75 5.64 1971-1988 
05595200 27 Richland Creek 127.12 2.65 1970-1988 
05595730 28 Rayse Creek 90.40 4.23 1979-1988 
05597000 29 Big Muddy River 783.60 11.78 1915-1988 
05597500 30 Crab Orchard 31.30 8.09 1952-1988 
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Figure 1. Locations of selected drainage basins, streamgaging stations, 
and precipitation stations 
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Figure 2. Frequency distribution of drainage areas of selected watersheds 
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Figure 3. Frequency distribution of wetland percentages in selected watersheds 



in precipitation from the analysis, four ratios were then calculated for each flood event to 
aid in the analysis: peakflow to average precipitation ratio; peakflow to peak precipitation 
ratio; peakflow to total precipitation ratio; and floodflow volume to total precipitation 
ratio. 



Figure 4. Frequency distribution of storm values of peakflow 
to average precipitation ratio for three selected stations 

11 



Figure 5. Frequency distribution of storm values of peakflow 
to peak precipitation ratio for three selected stations 
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Figure 7. Frequency distribution of storm values of floodflow volume 
to total precipitation ratio for three selected stations 
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Figure 8. Determination of flows at different exceedance probabilities 
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Evaluation Procedure 
For each flow parameter, the influence of wetlands on streamflow was studied 

using the linear regression analysis method. Regression analysis is a procedure for fitting 
an equation to a set of data. For a given set of measurements on two or more variables, 
regression analysis



where n is the sample size. The function can be minimized by taking the derivative of F 
with respect to each unknown coefficient, setting these derivatives equal to zero, and then 
solving for the unknown coefficients. 

In this study, percentage of wetlands in the watershed was the only independent 
variable while the streamflow parameters were the dependent variables. 

Testing Method 
The influence of wetlands on



Figure 9. Percent change (PC) determination from regression parameters 
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where PC is the calculated percentage change for an increase of one percent wetland area 
in the watershed and PCt is the threshold percentage change. The symbol | | implies 
absolute value. A positive (+) sign of the computed PC represents an increase in the 
parameter value and a negative (-) sign of the computed PC represents a decrease in the 
parameter value with increasing wetland percentage in the watershed. 
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RESULTS 

The results of this study relating changes in peakflow, floodflow volume, and low 
flow to percent wetland change are presented in this section. The results are based on the 



Figure 10. Relation between peakflow to average precipitation ratio 
and percent wetland for Illinois 
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Figure 11. Relation between peakflow to peak precipitation ratio 
and percent wetland for Illinois 
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Figure 12. Relation between peakflow to total precipitation ratio 
and percent wetland for Illinois 
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Figure 13. Relation between floodflow volume to total precipitation ratio 
and percent wetland for Illinois 
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Figure 14. Regional







Figure 15. Seasonal variation of the relations between peakflow 
and floodflow volume parameters and percent wetland 
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Figure 16. Regional variation of the relations between peakflow 
and floodflow volume parameters and percent wetland for fall 
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Figure 18. Regional variation of the relations between peakflow 
and floodflow volume parameters and percent wetland for spring 
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Figure 19. Regional variation of the relations between peakflow 
and floodflow volume parameters and percent wetland for summer 
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Table 4. Influence of Wetlands on Peakflow as Measured by the Percent Change 
in the Ratio of Peakflow to Average Precipitation Ratio (Qp/Pa) 

for a One Percent Change in Wetland Area 

Annual Fall Winter Spring Summer 

Illinois (statewide) -3.7 -5.7 -2.4 -4.0 -4.2 

South +0.8 +1.5 -3.3 -2.9 +0.3 
Central -5.9 -8.7 -4.3 -5.3 -5.9 
North -7.9 -8.2 -1.9 -6.5 -6.1 

Table 5. Influence of Wetlands on Peakflow as Measured by the Percent Change 
in the Ratio of Peakflow to Peak Precipitation (Qp/Pp) 

for a One Percent Change in Wetland Area 

Annual Fall Winter Spring Summer 

Illinois (statewide) -2.6 -4.1 -1.6 -2.8 -3.8 

South 1.6 2.7 -3.4 -2.7 +0.5 
Central -4.9 -8.3 -4.0 -3.6 -6.0 
North -6.5 -5.1 0.8 -4.6 -5.5 
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Table 6. Influence of Wetlands on Peakflow as Measured by the Percent Change 
in the Ratio of Peakflow to Total Precipitation (Qp/Pt) 

for a One Percent Change in Wetland Area 

Annual Fall Winter Spring Summer 

Illinois (statewide) -3.0 -5.6 -1.4 -2.7 -3.4 

South -1.9 2.3 -3.5 -2.2 -1.4 
Central -5.0 -9.0 -3.0 -3.5 -4.4 
North \ -2.9 -6.2 0.9 -3.8 -5.6 

Table 7. Influence of Wetlands on Floodflow Volume as Measured 
by the Percent Change in the Ratio of Floodflow Volume to Total Precipitation (V/Pt) 

for a One Percent Change in Wetland Area 

Annual Fall Winter Spring Summer 

Illinois (statewide) -1.4 -2.0 0.0 -1.0 -3.1 

South 0.0 +4.4 -1.5 -0.6 +0.2 
Central -4.5 -6.9 -3.0 -2.3 -6.1 
North -2.3 -6.9 +3.1 -3.7 -4.1 
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presented in the following sections. The results of this analysis are provided in figures 16-
19 and tables 4-7. 

Fall. The results for the fall season are shown in figure 16. The results show that 
all the peakflow parameters decrease with increasing percentage of wetlands for both 
central and northern Illinois. The decreases for central Illinois are 8.7, 8.3, and 9.0 
percent for peakflow to average precipitation ratio, peakflow to peak precipitation ratio, 
and peakflow to total precipitation ratio, respectively. The decreases for northern Illinois 
are 8.2, 5.1, and 6.2 percent, respectively. For southern Illinois, however, the peakflow 
ratios increase with increasing percentage of wetlands: the increases are 1.5, 2.7, and 2.3 
percent, respectively. Among the three peakflow parameters, the most noticeable 
relationship is for the peakflow to average precipitation ratio. Among the three regions, 
the relationships for central and northern Illinois are more perceptible. 

The floodflow volume parameter exhibits results similar to the peakflow 
parameters, where the parameter decreases in northern and central Illinois and increases in 
southern Illinois (figure 16c). The decreases for central and northern Illinois are 6.9 
percent and the increase for southern Illinois is 4.4 percent. 

Winter. The results for the winter season are summarized in figure 17. The 
results show that, in general, the peakflow parameters decrease with increasing percentage 
of wetlands in the watershed for southern and central Illinois. The decreases for southern 
Illinois are 3.3, 3.4, and 3.5 percent for peakflow to average precipitation ratio, peakflow 
to peak precipitation ratio, and peakflow to total precipitation ratio, respectively. The 
decreases for central Illinois are 4.3, 4.0, and 3.0 percent, respectively. For northern 
Illinois, only peakflow to average precipitation ratio decreases by 1.9 percent, while 
peakflow to peak precipitation ratio and peakflow to total precipitation ratio increase by 
0.8 and 0.9 percent, respectively. Among the three peakflow parameters, the most 
noticeable relationship is for peakflow to average precipitation ratio. Among the three 
regions, the relationship for central Illinois is the most perceptible. 

The floodflow volume parameter exhibits similar results to those of the peakflow 
parameters (figure 16d). The floodflow volume to total precipitationes wi t  3 .  ane 3.spercenw fo souther an. centra4Illinoiso an increase bpercen fow  northerr Illinois. 
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area in the watershed. The corresponding decreases for central Illinois are 5.3, 3.6, and 
3.5 percent, and for northern Illinois they are 6.5, 4.6, and 3.8 percent. Among the three 
peakflow ratios, the most significant relationship is for peakflow to average precipitation 
ratio. Among the three regions, the relationship for northern Illinois is the most 
perceptible. 

The floodflow volume parameter also decreases with increasing wetland 
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Figure 20. Relation between low-flow parameter, Q9 5 , and percent wetland for Illinois 
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Figure 21. Relation between low-flow parameter, Q9 9 , and percent wetland for Illinois 
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Table 8. Regional Variability of Influence of Wetlands on Low Flow in Illinois 
as Measured by the Percent Change in Q 9 5 and Q 9 9 

Q95 Q99 
(percent change) (percent change) 

Illinois (statewide) +7.9 +8.4 
Southern Illinois +15.9 +17.2 
Central Illinois +5.5 -4.6 
Northern Illinois +15.0 +18.2 

Table 9. Seasonal Variability of Influence of Wetlands on Low Flow in Illinois 
as Measured by the Percent Change in Q 9 5 and Q 9 9 

Q95 Q99 
(percent change) (percent change) 

Annual +7.9 +8.4 
Fall +8.4 +9.2 
Winter +7.6 +7.6 
Spring -1.8 -2.4 
Summer +8.0 +9.4 

Notes: 
Q 9 5 = flow at 95 percent probability of exceedance 
Q 9 9 = flow at 99 percent probability of exceedance 
+ = parameter value increases with increasing wetland percentage 
- = parameter value decreases with increasing wetland percentage 
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Regional Analysis 
The results from the regional analysis are also shown in figures



Figure 22. Seasonal variation of the relation between parameters Q 9 5 and Q 9 9 
and percent wetland low flow 
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for Q 9 5 and Q9 9 , respectively. The percent increases for central Illinois are 10.2 and 5.7 
percent, respectively. The percent increases for northern Illinois are 12.9 and 14.1 
percent, respectively. Thus the relationships for all three regions in Illinois show similar 
influence of wetlands on low flow for winter. The rate of increase is again higher for 
northern Illinois than that for either southern or central Illinois. 

Spring. The results show that for all three regions - southern, central, and 
northern Illinois - Q 9 5 as well as Q 9 9 are influenced much less by9 Tc 1.837 Tw (0630 Tm
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SUMMARY AND CONCLUSIONS 

Existing streamflow records from 30 gaging stations in different geographic 
regions of Illinois with different percentages of wetlands in their watersheds were analyzed 
to assess the influence of wetlands on streamflow. The objective of the research was to 
determine if streamflow parameters were influenced by the percentage of wetlands in the 
34 Tc 0.59e



change in
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