

U.S. G 9, S^L/

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

U#___, I___ 2003

 1 . . G 2 C D E 3 T T E , I .

U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, S**P**. $\mathcal{F} = \mathcal{F}_{\mathcal{F}}$

U.S. GEOLOGICAL SURVE

C / G. G/ _, D / , _ /

С. / Дл 🕅 //:

U.S. G G. G. S. S. J BJ M L. J S J M B 25286 F J C J J D J J, CO 80225-0286

CONTENTS

A	1
	2
PE) _ 1 \$ _	5
A -1 Q -1	5 F
S = C + A A	J 8
	10
$\mathbf{P} \neq \mathbf{v} \neq $	
Т , , , L _B , , , D , J , L _B , ,	11
Gi ¶ A.v.	11
D, Y, F _ S \$.	11
0 ^k ↓ / T ↓	11
95 P 1 . , 95-P 1 . C . 1 L M G M	11
$\mathbf{R} = \mathbf{A}\mathbf{B} = \mathbf{A}\mathbf{P} = \mathbf{A}\mathbf{A} + \mathbf{A}\mathbf{A} + \mathbf{A}\mathbf{A}\mathbf{A} + \mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}\mathbf{A}$	
	12 12
$\mathbf{G} \qquad \mathbf{A} \qquad \mathbf{B} \qquad \mathbf{A} \qquad \mathbf{C} \qquad \mathbf{A} \qquad $	12
S A C P A A D A A D A	
G_{i} η A_{i}	
D ¶ / _ S L	14
0 ^k _) T	14
R _ NBNP , ∲ IAI ⊈ H, P, I NC ∯ _N _N _N L NU	14
C // _ N.P., ♣ /A/ ♣ Ḫ /♣ / N N LN& ♣ C ₱ N _ N _ N	14
$A_{N} = P_{A} + \frac{1}{2} A_{A} + \frac{1}{2} A_{A$	15
	25
	20 27
Δ .	
1.P. A. A. H. H. J. A. A. S. S. C. G. L. A	61
2.1.1 C.1.1 1A .1St 1 S . C . G . I	67

Figures

			¢.	1-4. M
	,1.3	- 1 C 1. g.	L L	1. L 🔉 k
3				

7. N / / 🔍 🗸 🗸	. NE - 9 2 /	(A)		
	, , , , , , , , , , , , , , , , , , ,	/	-1 FL %	20
8. F? ^k 9	. .		r ken ,	20
C ¶ Q , I . , _	Q		- • , ,	22
9. M 🔉 (A) 🖧 📍	h		,	04
υ¶, ϼ, , Ι ͺ, Ι ͺ, (Β) _		₩ -¥ - 1		

Tables

1.1 .1	Ε.)	٦	.1	P) _	1 -	A.	h _ T	1 🤉	<i>)</i>	-	1	· ¶. ,	-	.)	~- V	9		
ļ.	4	~	Р Г. –	ļ	. 1.	1										 		 	33
2.S -		¢,	-	-	9.	1 -	Ŀ,	Ø -	.1	<u>_</u>		, C ¶	Ģ.	, I	.1	 		 	34

IV Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

CONVERSION FACTORS AND ABBREVIATED SOIL- AND AIR-QUALITY UNITS

M	MB					
	Le					
(.)	2.54					
()	0.3048					
()	1.609					
	A ea					
	0.4047					
(²)	0.09290					
	2.590		l T			
t	Ma		t			
ι, ι ()	28.35					
Teeae C _l (C)	F = (1.8 C) + 32	F	(F)	:		
A e a ed - a d a - a $(\mu / {}^3)$.	:C (μ /)		l l	. C		
() t	τ () .		t 1,000		
· t ()	ι ι ι ι	(_t) .	t		
Aea: MD /						

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

С

By R J_T.K, T // L.A/., F.C. ..., D

GP , EM M ALL AN A R , A B ANA

Abstract

(AH) τ t . AH . I 2001 t 2002 t : t ()_t () ()_t () (1,2,3-) ((,) ι С AH t AH . C ι ι AH ι AH ¹ τ ι AH . **T** τ AH С AH t t ι 1,000 t ι . C AH ι . C AH t ι

۳^ι ι' AH ι ι AH ι .pD AH t τ . H t AH τ . **T** t AH AH t t AH t ι С Т AH t ι . C Ð t ι . C ι ι ι Т ι' ι t 2 6 t t С t ιι T . **T** С 20 t ι ι

> Abstract 1

ιι ιι .Ε . C.

INTRODUCTION

(AH) ¹ ¹ ¹ ¹ ¹ ¹

² Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

), t ι). (ι τ В С ι Ŧ Ð ι , **T**AC t ι ι Τ TAC ι t ι ι . **T** ι TAC t ι ι ι ιι ι t . **T** () ^tTAC t ι ι ι ι ι t ι AH ι ι , AH ι ι ι t ι t) ι t ι ι AH T ι ι . **T** t AH ι ι С ι ι ι _ AH ι t t t . D AH ι t AH

4

и -3.7 .5 - -1. (Т

ι

-

ι

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Purpose and Scope

Acknowledgments

Τ_ι C Ε .

⁶ Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

. B ι ι , ι Η ι С D $(\stackrel{\iota}{CD} E)$ E AH ι ι . E ľ t F t ι t . F ι ۲ AH ι ι ι F CD E ,

8 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

(IC -AE). **T** (¹ 2); 1 28 (²); 12 . 1 . I , 1 . 1 . T , ,

С

Statistical Analysis of Uncensored Polynuclear Aromatic Hydrocarbon Data

C L L AH L AH-CE-19

(¹ 3). B t AH-CE-19

ι .

10 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

ι. Ι ι τ ι ιC С E . T t τ ι ι t ι . Α 95-(0.05) t t AH-CE-19. ι AH Α (AI, 1, 1999) ι). **T** ι Α t () 0.1 H H (1995) . **T** AH-CE-19. τ G A. **Τ** ι ι t't . B

D . . . S___

ι ι ι ' 0^k, /T, А 1 75 ^l t . A 75 2 1.5 (H н^т, 1995). **Т** ι t ι, 75 ^t t t τ Т 25 ^t 75 ^t ι. Τ 75 t t ι ι t 1.5 ι . **T** ι t ан-се-19, _г. AH-CE-19 τι ι, ι AH t (τ τ) ι ι .Τ t t t ι ι ι

Methods 11

ι[.]Ει ι'ι ι

12 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

•

ι t 6). **T** , 2000) ${\rm AH}^\iota$ ι (ι t ι t τ) ι Т AH (A^t, A) ι AΗι . **T** t t τ^ι t . A t 0.05 . **T** AH-CE-19^t А А. τ Т : ^t), 11 30 (15 10 (20), 31 50 (9), 51 100 (6 100 (6),). **T** ΑH ι t ι.**Τ** AH ι AH А А ι ι.**Τ** ι ι ι ι . **T** 0.05 . A t AH-CE-19 . **T** Α. А t A.1, G . B. () / . 1 C 9 .V - .1 G А , (E А , 2001) I ()^t t ι ι .Τ В () t t () , t ι GI . ι

Statistical Analysis of Censored Polynuclear Aromatic Hydrocarbon Data

С , t , 1) (3). E (ι (t). B ₁ ι t AH ι ι . A ι t t Η Н (1995), ι Η С (1988), С (1988). C ι ι τ ι 95¹ ι . Α ι t ι

G A. 1 9. В ι D D (D , I ., 1996). F D ι , t ι . H ι ι AH ι . B ι AH-CE-19.

t				t
ι ι	C , ι ι	(D H	ĽD , ., 2002), C	G ^t (1988). T A CII

¹⁴ Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

ANALYSIS OF POLYNUCLDC/R

20 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Analysis of Polynuclear Aromatic Hydrocarbon Data 21

Plo

22 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02 T AH ι, AH ι, AH ι AH ι AH ι AH ι AH ι

Figure 9. (A) Kig
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1</

²⁴ Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

0.02. A (²) AH (15). **T** AH

ιι ιι , ι , ι , ι τ ι . Δ

AH ι ι 1- ι -

ι - AH ι ι 0.5ι -AH (,) . ι ,

, ц А-2

АН¹ ¹ ¹ ¹ (Н Н , 1995) (18). **Т** -

t

0.10, () .[D ι - AH ι ι 0.25- ι - 2 AH. T

ι

ANALYSIS OF INORGANIC DATA

С ι 34 ι , ι 45 ι 75 . **T** ι 19). A 11 (ι t ι (D D). T D D, ι (1 /), /), (2 (8 /), 50 /), (2 /), t ι₍₅₀ι 2 /), (4 / /),), ι /), _t 40 (100 /), ι 1 /). Т **T** - 8 -1.

²⁶ Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

AH AH ι ι AH t ι ι T AH ι ι .D^t t AH ι t Η AH ι ι t AH AH Т ι AH ι ι С T^t () , ι AH ι . E ι 4,084 (Þ) t , t , . C 419 () ι ι ι ι С t C ι ι ι Т ι' ι' , ι , ι
, 1975-1990: Ι $\begin{array}{cccc} \mathbf{T} & \mathbf{T} & \mathbf{E} & \mathbf{I} & ., 2001, & \\ & & \mathbf{AH} & & & \mathbf{C} \\ & & \mathbf{C} & \mathbf{C} & & , \mathbf{D} \end{array}$ ^t, I : Е С , I , _ι ...A C E , 1986, D , I H I : . . A C E , C D , 273A C E ,2001, 1135 A , 1994 , **T** , / -846, 3 E : , , D.C., _t . . E Е . L A 540/ -99/008, L , D., C , ^ , D., C , ., A , ., G , A., 2001, I AH - AH I D A : A , . 21, . 2, . 275-294.

Tables

 Table 2. S

Sample number (location shown in figure 4)	Latitude	Longitude	USGS site identification number	Land use at site	Distance from nearest roadway (feet)	Date of sample collection
AH_CE_1	42 00'35	87 46'20	420003508746201	C	25	1/24/2002
AH-CE-2	41 58'46	87 48'25	415846087482501	T	40	1/24/2002
AH-CE-3	41 57'40	87 42 41	415740087424101	C	-0	1/24/2002
AH-CE-4	41 57 40	87 38'18	415/0/087381801	C C	190	1/24/2002
AH-CE-4D	41 54'04	87 38'18	415404087381801	C C	190	1/24/2002
	41 52/16	07 40/11	415216087401101	L I	110	1/24/2002
AH-CE-5	41 55 10	87 40 11	415310087401101		118	1/24/2002
AH-CE-6	41 51 07	87 42 14	41510/08/421401	C	/	1/24/2002
AH-CE-7	41 50 42	87 37 31	415042087373101	ι ι	74	1/24/2002
AH-CE-8	41 49 17	87 36 38	414917087363801		78	1/24/2002
AH-CE-9	41 47 43	87 37 41	414743087374101		125	1/24/2002
AH-CE-10	41 43'24	87 36'16	414324087361601	Т	16	1/24/2002
AH-CE-11	41 44'57	87 40'37	414457087403701	Ιι	221	1/24/2002
AH-CE-12	41 45'18	87 42'51	414518087425101		37	1/24/2002
AH-CE-13	41 45'51	87 44'12	414551087441201	Ιι	626	1/24/2002
AH-CE-14	41 46'42	87 44'26	414642087442601	С	41	1/24/2002
AH-CE-15	41 42'11	87 39'13	414211087391301	I	140	1/25/2002
AH-CE-15D	41 42'11	87 39'13	414211087391302	I	140	1/25/2002
AH-CE-16	41 42'49	87 32'45	414249087324501		85	1/25/2002
AH-CE-17	41 42'15	87 31'33	414215087313301	T	69	1/25/2002
AH-CE-18	41 44'42	87 38'37	414442087383701	С	69	1/25/2002
AH-CE-19	41 46'52	87 37'08	414652087370801		120	1/25/2002
AH01	41 55'57	87 43'37	415557087435701	Ιι	30	6/5/2001
AH02	41 55'15	87 41'50	415515087415001	С	10	6/5/2001
AH03	41 54'33	87 46'08	415433087460801	С	10	6/5/2001
AH04	41 56'20	87 45'00	415620087450001	С	45	6/5/2001
AH05	41 55'25	87 48'02	415525087480201	С	35	6/5/2001
AH06	41 56'42	87 48'57	415642087485701		1	6/5/2001
AH07	41 57'05	87 48'26	415705087482601	С	45	6/5/2001
AH08	41 58'37	87 50'12	415837087501201		16	6/5/2001
AH09	41 59'31	87 47'54	415931087475401		22	6/5/2001
AH10	41 58'27	87 45'59	415827087455901	С	32	6/5/2001
AH11	41 41'35	87 42'03	414135087420301	С	30	6/5/2001
AH12	41 42'18	87 39'24	414218087392401	Т	25	6/5/2001
AH13	41 41'14	87 37'18	414114087371801	С	20	6/5/2001
AH14	41 40'36	87 31'21	414036087312101		10	6/5/2001

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, 34 Chicago, Illinois: 2001-02

 Table 2. S
 C
 C
 C
 C
 C
 C

Sample number (location shown in figure 4)	Latitude	Longitude	USGS site identification number	Land use at site	Distance from nearest roadway (feet)	Date of sample collection
AH15	41 39'19	87 35'50	413919087355001	С	50	6/5/2001
AH16	41 39'34	87 32'55	413934087325501		10	6/5/2001
AH17	41 40'58	87 32'24	414058087322401		23	6/5/2001
AH17D	41 40'58	87 32'24	414058087322402		23	6/5/2001
AH18	41 43'35	87 33'00	414335087330001		10	6/5/2001
АН19 АН20 D	41 45'06 5649(49:197.3)	87 34'38 15 5 5 4,9937 5 0	414506087343801 (33'504) 438808/43 35005.2473	C 3 ()) 8 9137 T 900	20 9 19	6/5/2001

AH-97TD ()92(AH- -20)-4168.8(41) T 5.247 0 0 5.247 134.6921557.994 T ()T 9 0 0 9 137.315 554.997 42.9540'58 87

A 57 A 57 A 57 B () t 57 B () t 57	51 43	nelecien	Range of detected concentrations including sample PAH-CE-19 (micrograms per kilogram)	Range of detected concentrations without sample PAH-CE-19 (micrograms per kilogram)	samples exceeding Tier 1 remedial objectives for residential soil because of ingestion ¹	remedial remedial objectives for industrial or commercial soil because of ingestion ¹	samples exceed- ing Tier 1 remedial objectives for construction workers because of ingestion ¹
A 57 A 57 B () t 57 B () t 57	43	89	<5-43,000	<5-1,500	0	0	0
A 57 B () 57 B () ₁ 57		75	<6-1,035	<6-1,035			
B () 57 B () ₁ 57	54	95	<7-120,000	<7-4,600	0	0	0
B () ₁ 57	57	100	26-370,000	26-16,000	27	S	1
	57	100	40-550,000	40-18,000	32	9	1
B () ₁ 57	57	100	36-280,000	36-10,000	3	1	0
B (,,) 57	57	100	24-290,000	24-8,100			
B () 57	57	100	39-460,000	39-17,000	51	31	7
C 57	57	100	31-350,000	31-15,000	1	0	0
D (,) 57	57	100	8-41,000	8-1,600	38	L	1
F ₁ 57	57	100	52-1,100,000	52-35,000	0	0	0
F ₁ 57	51	89	<6-36,000	<6-2,000	0	0	0
I (1,2,3-) 57	57	100	31-370,000	31-9,900	22	С	1
57	35	61	<13-2,500	<13-700	0	0	0
57	57	100	22-520,000	22-19,000			
57	57	100	51-720,000	51 - 30,000	0	0	0

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

ť, l, ĝ ů, یک در د -• ο, . • e., 0 Table 3. S[!]

36

	Sample number	Mean distance to unclas- sified	Mean distance to resi- dential	Mean distance to com- mercial	Mean distance to insti- tutional	Mean distance to industrial, ware- housing, and whole- sale	Mean distance to trans- portation, com- munica- tion, and utilities	Mean distance to agricul- tural land	Mean distance to open snace	Mean distance to vacant or wetland	Mean
	(location shown in	land use	land use	land use	land use	land use	land use	use	land use	land use	to water
_	figure 4)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
	AH-CE-1		4,356	4,265	5,216	2,395	8,144		4,936	6,384	
	AH-CE-2	5,253	3,403	2,645	3,441		1,970		2,294	1,361	
	AH-CE-3		4,911	4,974	6,659	6,082	6,244		5,373	6,979	5,111
	AH-CE-4		4,967	5,055	4,288	4,737	4,944		5,459	3,786	5,235
	AH-CE-5		5,073	4,787	6,209	3,516	4,838		4,939	3,947	
	AH-CE-6		3,767	3,531	3,957	4,944	4,428		2,922	4,585	6,241
	AH-CE-7		5,086	5,436	3,846	5,595	5,536		5,017	5,503	6,224
	AH-CE-8		4,727	4,621	4,601	6,503	5,926		5,385	3,801	
	AH-CE-9		4,479	4,415	4,592	6,564	3,681		4,572	3,907	
	AH-CE-10		4,973	5,277	4,041	5,024	5,901		7,191	6,299	
	AH-CE-11	9,308	4,924	4,597	4,531	3,720	3,549		5,767	5,197	
	AH-CE-12	10,330	5,321	5,448	7,313	2,457	3,294		4,829	3,933	4,874
	AH-CE-13	4,376	4,523	4,736	2,909	2,531	2,102		2,320	2,054	
	AH-CE-14	11,084	9,809	9,386	10,373	10,686	5,856		8,757	5,353	
	AH-CE-15	10,271	5,054	4,971	5,196	6,916	5,514		5,525	7,751	
	AH-CE-16		4,386	3,752	5,079	3,195	5,434		5,964	6,269	2,825
	AH-CE-17		2,963	1,882	3,162	1,260	1,939		4,104	2,331	
	AH-CE-18		4,829	4,670	4,213	3,401	4,642		4,908	4,800	
	AH-CE-19		5,081	4,985	5,618	2,469	3,748		6,244	4,103	4,854
	AH01		4,130	3,963	3,865	4,061	5,186		3,497	5,280	
	AH02		4,772	5,106	5,193	6,193	5,571		4,559	5,644	6,288
	AH03	4,951	3,904	4,059	4,690	3,946	3,012		4,016	3,757	
	AH04		4,269	4,200	4,708	3,253	5,039		4,270	3,086	
	AH05	5,112	4,083	4,035	3,988	3,297	5,758		4,542	3,632	
	AH06	3,942	3,482	4,513	5,343	9,768			7,798	5,695	9,734
	AH07	4,008	4,556	3,244	3,868	4,659			4,504	5,144	
	AH08	6,461	8,073	7,135	14,488	19,612	19,974	25,114	6,211	19,443	13,079
	AH09	12,046	6,017	5,384	4,158	3,059	4,909		4,396	6,918	
	AH10	6,691	4,678	3,765	4,720	4,678	4,054		5,734	7,861	

Table 4. M 🔄 🖕 🔊 🤳	1 - 1 - 1 /	1 . + 1 _	/ ,C¶.g.,I	C .1.1
[, no data]				

Sample number (location shown in figure 4)	Mean distance to unclas- sified land use (feet)	Mean distance to resi- dential land use (feet)	Mean distance to com- mercial land use (feet)	Mean distance to insti- tutional land use (feet)	Mean distance to industrial, ware- housing, and whole- sale land use (feet)	Mean distance to trans- portation, com- munica- tion, and utilities land use (feet)	Mean distance to agricul- tural land use (feet)	Mean distance to open space land use (feet)	Mean distance to vacant or wetland land use (feet)	Mean distance to water (feet)
AH11	7,930	5,957	6,824	5,864	9,956	7,545	5,100	4,773	9,022	8,472
AH12	9,651	5,263	6,921	4,228	4,723	3,305		5,157	4,614	

AH-6 -13 -- -96(--) T 0 -1.7778 TD ()92(AH-7 -13)-2768.5(--)-4303,7 ,228 -- 5,864-- AH-8 -13 --

³⁸ Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Table 5. P 🖣 🔉 💵		+ • • •	- - -	¢, , C∮, ç	, I . I C . L. K					
Sample number (location shown in figure 4)	r Residential	Commercial and services	Institutional	Industrial, warehousing, and wholesale	Transportation, communication, and utilities	Open space	Vacant or wetland	Agricul- ture	Water	Unclassified (outside of city boundary)
AH12	31.7	10.2	14.5	16.6	17.8	0.4	8.8	0	0	0
AH13	52.5	41.2	5.1	0	0	.2	1.0	0	0	0
AH14	84.6	14.2	0	0	0	0	1.2	0	0	0
AH15	55.6	14.1	10.4	0	1.3	16.5	2.1	0	0	0
AH16	58.4	2.9	2.8	0	10.0	13.6	12.3	0	0	0
AH17	5.8	28.9	0	23.8	0	9.6	31.8	0	0	0
AH18	15.9	31.7	0.8	11.1	20.0	0	20.5	0	0	0
AH19	78.9	14.8	5.9	0	0	0	4.	0	0	0
AH20	82.5	11.5	2.4	1.0	0	0	2.6	0	0	0
AH21	28.2	11.4	28.8	8.3	17.1	0	2.8	0	3.4	0
АН22	60.4	26.8	8.0	0	1.3	0	3.5	0	0	0
AH23	66.6	31.1	1.8	0	0	0	.5	0	0	0
AH24	78.2	17.7	3.5	0	0	0	9.	0	0	0
AH25	60.7	24.0	4.5	1.4	0	2.4	7.0	0	0	0
АН26	60.8	26.1	1.8	3.3	0	Ľ.	7.3	0	0	0
AH27	54.8	28.6	4.3	12.3	0	0	0	0	0	0
AH28	78.4	5.3	2.5	6.	0	12.2	Ľ.	0	0	0
AH29	36.6	7.1	5.7	15.5	4.7	9.7	20.7	0	0	0
AH30	42.5	14.6	10.8	12.2	11.0	5.1	3.8	0	0	0
АН31	43.1	4.2	16.8	15.1	1.7	8.1	11.0	0	0	0
AH32	43.2	12.8	7.9	11.9	21.9	0	2.3	0	0	0
AH33	66.3	23.7	2.8	6.3	0	0	6.	0	0	0
AH34	68.5	25.0	6.5	0	0	0	0	0	0	0
AH35	66.6	25.0	6.0	0	0	1.1	1.3	0	0	0
АН36	63.7	23.2	10.4	0	2.4	0	ω	0	0	0
AH37	1.8	56.2	8.6	3.8	22.1	0.3	3.7	0	3.5	0
AH38	66.4	18.9	4.1	0	3.6	7.0	0	0	0	0

40 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Sample number (location shown in figure 4)	Residential	Commercial and services	Institutional	Industrial, warehousing, and wholesale	Transportation, communication, and utilities	Open space	Vacant or wetland	Agricul- ture	Water	Unclassified (outside of city boundary)
			Percent la	nduse within a 1/2-	mile radius (1-mile di	ameter) aro	und the sampl	ing site		
AH-CE-1	48.4	9.3	1.9	19.5	0	1.2	0	0	0	19.8
AH-CE-2	71.5	10.0	4.5	0	9.6	3.9	9.	0	0	0
AH-CE-3	79.5	15.9	4.3	0	¢.	0	.1	0	0	0
AH-CE-4	29.7	15.7	9.1	21.4	7.1	5.1	9.7	0	2.1	0
AH-CE-5	25.6	10.7	5.3	39.2	5.0	3.6	10.7	0	0	0
AH-CE-6	55.9	19.2	8.0	0.3	1.8	11.8	3.1	0	0	0
AH-CE-7	23.7	10.5	14.5	16.7	16.2	8.3	10.1	0	0	0
AH-CE-8	58.1	9.9	4.3	1.1	6.	8.4	17.5	0	0	0
AH-CE-9	47.2	12.5	4.6	1.9	14.4	4.2	15.2	0	0	0
AH-CE-10	45.2	6.3	20.9	12.8	7.9	2.3	4.6	0	0	0
AH-CE-11	53.5	12.4	6.4	8.9	10.1	8.1	0.7	0	0	0
AH-CE-12	57.9	3.8	4.1	18.7	13.2	1.0	1.2	0	0	0
AH-CE-13	8.4	2.1	2.4	44.2	27.8	1.7	13.4	0	0	0
AH-CE-14	48.9	14.0	1.6	9.0	20.1	2.1	4.4	0	0	0
AH-CE-15	63.3	5.1	5.8	7.7	9.7	4.0	4.4	0	0	0
AH-CE-16	20.7	2.8	0.7	26.5	17.7	2.7	17.3	0	11.6	0
AH-CE-17	33.5	8.3	Γ.	2.9	9.2	1.1	1.6	0	0	42.7
AH-CE-18	56.4	10.5	6.8	15.1	4.0	1.5	5.7	0	0	0
AH-CE-19	44.0	8.5	2.6	13.9	19.2	2.6	9.2	0	0	0
AH01	56.9	12.4	3.5	23.4	6.	2.7	¢.	0	0	0
АН02	65.2	20.7	5.2	2.8	0.2	4.8	1.1	0	0	0
AH03	75.4	8.2	2.1	5.8	5.5	1.2	1.8	0	0	0
AH04	72.9	13.6	3.5	9.5		0	4.	0	0	0
AH05	61.3	15.2	4.4	6.3	0	3.3	0.5	0	0	9.1
АН06	83.7	4.5	10.7	0	0	1.1	0	0	0	0
АН07	53.6	8.2	12.2	0	0	0	0.1	0	0	25.9
AH08	T.T.T	12.3	4.8	0	4.3	0	0	0	0	1.0
4H09	79.5	6.6	7.0	1.9	0	5.1	0	0	0	0
AH10	71.0	12.2	2.2	2.5	9.0	3.1	0	0	0	0
AH11	69.0	7.1	23.2	0	0	Ľ.	0	0	0	0

42 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Sample number (location shown in figure 4)	Residential	Commercial and services	Institutional	Industrial, warehousing, and wholesale	Transportation, communication, and utilities	Open space	Vacant or wetland	Agricul- ture	Water	Unclassified (outside of city boundary)
AH-CE-3	71.4	15.5	4.0	0.8	0.3	6.5	0.2	0	1.4	0
AH-CE-4	25.1	19.1	6.5	19.6	10.1	5.3	7.7	0	3.0	3.6
AH-CE-5	32.8	15.7	7.1	25.0	7.8	2.7	9.0	0	0	0
AH-CE-6	49.4	12.7	8.6	8.8	3.8	10.3	5.8	0	9.	0
AH-CE-7	23.6	13.5	10.1	11.3	20.2	7.5	9.5	0	6.	3.4
AH-CE-8	42.9	11.1	5.8	1.5	4.9	10.5	12.5	0	0	10.9
AH-CE-9	39.6	9.5	4.9	4.2	15.6	13.8	12.0	0	i.	0
AH-CE-10	52.2	3.7	10.8	14.5	9.2	3.9	5.8	0	0	0
AH-CE-11	53.9	8.5	4.1	8.3	9.6	12.8	2.8	0	0	0
AH-CE-12	55.5	7.0	7.4	11.1	9.6	5.4	3.5	0	9.	0
AH-CE-13	28.8	10.4	6.0	24.8	11.5	1.9	5.7	0	0	11.0
AH-CE-14	39.1	7.3	1.0	6.4	30.5	3.3	6.1	0	0	6.3
AH-CE-15	75.7	6.8	4.9	2.2	5.5	2.5	2.5	0	0	0
AH-CE-16	33.7	6.0	1.3	17.9	13.4	6.3	15.0	0	5.8	.6
AH-CE-17	30.3	3.5	1.4	4.3	4.5	5.9	1.5	0	L.	47.9
AH-CE-18	58.4	10.0	3.8	12.4	6.2	3.2	6.0	0	0	0
AH-CE-19	45.1	9.3	7.7	6.2	12.1	10.3	8.5	0	6.	0
AH01	68.2	12.0	3.3	12.2	1.3	2.4	9.	0	0	0
AH02	59.9	17.1	3.5	6.2	3.4	6.6	3.0	0	4.	0
АН03	65.7	9.0	3.3	9.1	3.1	4.5	1.8	0	0	3.4
AH04	72.7	13.0	3.7	7.4	0.5	2.6	0.3	0	0	0
AH05	49.8	12.7	2.2	8.7	0	2.8	1.1	0	0	22.7
AH06	67.0	5.0	13.7	0	0	1.8	0.	0	0	12.5
АН07	46.5	5.1	20.3	¢.	0	1.0	2.8	0	0	24.0
AH08	56.4	10.3	2.8	0	4.7	17.4	9.	0	.1	7.8
AH09	62.8	6.3	16.8	1.5	3.5	8.2	0.2	0	0	0.8
AH10	69.4	10.2	2.8	5.5	5.0	6.9	6	0	0	0
AH11	65.0	5.0	14.1	.1	0	7.6	1.2	2.6	.1	4.4
AH12	77.5	5.8	4.3	2.2	5.4	2.5	2.4	0	0	0
AH13	64.7	11.3	5.3	10.3	2.6	2.5	3.2	0	.2	0

Table 5

, L. D. L. K	Transportation, communication, and utilities
¢∕ , C∱ ¢	Industrial, warehousing, and wholesale
9 €. ¶ -	Institutional
:) _ 0 }	Commercial and services
+ • •	Residential
Table 5. P 🖣 🛛 💵	Sample number (location shown in figure 4)

44 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

T 7.S $J = \frac{1}{2} + \frac{1}$

			Shapiro-Wil	k test statist	ic	
	Exclu	uding samp	e PAH-CE-19	Inclu	iding sampl	e PAH-CE-19
Constituent	Value	n-value	Conclusion	Value	n-value	Conclusion
(natural-log transformed)	Value	p-value	Conclusion	Value	p-value	

Table 8. S_____ k</th

[Bold denotes retained estimates]

		Number	Number	Maximum detection limit	Mean	Standard deviation	Value of 25th percentile	Median	Value of 75th percentile
Constituent	Number	less than	of	(micro-	(micro-	(micro-	(micro-	(micro-	(micro-
(natural-log transformed)	of samples	detection limit	detection limits	grams per kilogram)	grams per kilogram)	grams per kilogram)	grams per kilogram)	grams per kilogram)	grams per kilogram)

Estimates using log-probability reg	ression of samples with a	concentrations greater	than the detection limit
Estimates using log probability reg	i cooloni or oumpreo white	fonocina anons gi cater	

All Samples											
А	57	7	5	3.05	4.24	1.86	2.41	4.44	5.63		
А	57	16	6	3.18	3.22	1.55	1.91	2.83	4.18		
А	57	3	3	3.05	5.22	1.89	3.68	5.39	6.48		
Fι	57	7	5	3.05	4.36	1.88	2.53	4.51	5.75		
	57	22	7	3.18	3.56	1.44	2.42	3.00	4.54		
Excluding Sample PAH-CE-19											
А	56	7	5	3.05	4.14	1.65	2.45	4.44	5.52		
А	56	16	6	3.18	3.16	1.47	1.90	2.80	4.10		
А	56	3	3	3.05	5.10	1.69	3.66	5.32	6.44		
Fι	56	7	5	3.05	4.25	1.69	2.53	4.43	5.72		
	56	22	7	3.18	3.51	1.30	2.46	2.97	4.49		

Estimates using adjusted lognormal maximum likelihood regression of samples with concentrations above the detection limit

				All San	nples				
А	57	7	5	3.05	4.26	2.32	2.66	4.44	5.63
А	57	16	6	3.18	3.22	1.76	2.00	2.83	4.18
А	57	3	3	3.05	5.24	2.15	3.68	5.39	6.48
F	57	7	5	3.05	4.38	2.27	2.79	4.51	5.75
	57	22	7	3.18	3.51	1.65	2.35	3.18	4.54
			Ex	cluding Samp	le PAH-CE-19				
А	56	7	5	3.05	4.15	2.17	2.64	4.44	5.52
А	56	16	6	3.18	3.16	1.68	1.99	2.79	4.10
А	56	3	3	3.05	5.13	2.02	3.66	5.32	6.44
F	56	7	5	3.05	4.27	2.13	2.78	4.43	5.72
-	56	22	7	3.18	3.44	1.54	2.36	3.14	4.49

46 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Table 11. R 👌 🕴 🥵 🖓 🚓

50 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

	Constituent	Molecular weight (grams per mole)	Solubility in water at 25°C (micrograms per liter)	Octonal-water partition coefficient (dimensionless)	Organic carbon partition coefficient (milliliters water per gram carbon)	Henry's Law Constant (cubic meters atmosphere per mole)
А		154	3,930.	9,600	4,600	1.40E-04
А		154	3,420.	5,300	2,500	1.45E-03
А		178	59.	14,000	28,000	5.87E-05
В	()	228	11.	410,000	200,000	3.01E-06
В	() ₁	252	2.4	1,100,000	550,000	1.22E-05
В	() ₁	252	2.4	1,150,000	550,000	7.48E-07
В	(, ,)	276	.3	3,200,000	1,600,000	1.44E-07
В	()	252	3.8	1,550,000	5,500,000	1.28E-09
С		228	1.9	410,000	200,000	8.45E-05
D	(,)	278	.4	6,900,000	3,300,000	1.33E-08
F,		202	260.	79,000	38,000	1.45E-05
F		166	800.	15,000	7,300	5.74E-05
I	(1,2,3-)	276	.5	3,200,000	1,600,000	6.95E-08
		128	12,500.	2,344	1,290	1.08E-03
		178	435.	28,000	14,000	1.45E-04
		202	133.	80,000	38,000	9.92E-06

 Table 15. R
 Image: Second se

	Constituent (natural-log transformed)	F value	Probability of (F) ¹	Conc	clusion
В	()	0.31	0.93	F	Н
В	()	.29	.94	F	Н
В	() ₁	.36	.90	F	Н
В	(, ,)	.34	.91	F	Н
В	() ₁	.32	.93	F	Н
С		.42	.86	F	Н
D	(,)	.39	.88	F	Н
Fι		.31	.93	F	Н
Ι	(1,2,3-)	.56	.76	F	Н
		.26	.95	F	Н
		.43	.86	F	Н

1

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, 52 Chicago, Illinois: 2001-02

 Table 16. Statistical description of polynuclear aromatic hydrocarbons in ambient soils for different land-use categories, Chicago, Illinois—Continued

[Bold denotes rejection of the assumption of normal distribution for the constituent. %, percent]

(nat	Constituent tural-log transformed)	Mean	Standard deviation	Lowest value (0%)	First quartile (25%)	Median (50%)	Third quartile (75%)	Highest value (100%)	Shapiro- Wilk test (p-value)		
Industrial, Warehousing, and Wholesale (5 cases)											
		7.15	1.28	5.19	6.55	7.65	8.10	8.27	0.34		
F,		7.91	1.14	6.13	7.44	8.40	8.70	8.87	.28		
-		7.55	1.14	6.06	6.72	7.74	8.56	8.68	.48		
В	()	7.00	1.17	5.35	6.40	7.09	8.07	8.10	.49		
С		7.04	1.10	5.39	6.58	7.17	7.97	8.07	.52		
В	()]	7.37	1.01	5.86	6.91	7.63	8.13	8.34	.57		
В	()	6.95	1.13	5.44	6.11	7.33	7.90	7.97	.31		
В	()	7.18	1.08	5.60	6.63	7.41	8.07	8.19	.51		
D	(,)	5.07	1.01	3.30	5.25	5.39	5.56	5.83	.03		
В	(, ,)	6.35	1.02	4.70	6.02	6.84	7.09	7.09	.12		
Ι	(1,2,3-)	6.59	0.98	5.08	6.15	7.04	7.31	7.38	.21		
Residential (9 cases)											
		7.33	1.77	4.87	5.48	7.60	8.67	9.68	0.40		
F,		8.03	1.61	5.70	6.48	8.37	9.39	9.90	.33		
ť		7.65	1.63	5.52	5.86	8.24	8.73	9.74	.22		
В	()	7.10	1.64	4.94	5.35	7.44	8.54	9.12	.24		
С		7.14	1.64	5.08	5.39	7.44	8.67	9.31	.27		
В	() ₁	7.38	1.61	5.25	5.91	7.55	8.88	9.55	.47		
В	()	6.91	1.52	4.61	5.67	7.17	8.29	9.11	.82		
В	()	7.24	1.60	5.08	5.67	7.50	8.73	9.39	.45		
D	(,)	5.28	1.21	3.33	4.44	5.30	6.23	7.00	.82		
В	(, ,)	6.52	1.51	4.79	5.14	6.59	7.60	8.84	.41		
Ι	(1,2,3-)	6.81	1.54	4.87	5.39	6.82	8.37	9.00	.37		

⁵⁴ Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

 Table 17. R
 Image: Additional state in the state i

Tanu	use categories.j				
	Constituent (natural-log transformed)	F value	Probability ¹	Co	nclusion
В	()	0.92	0.49	F	Н

 Table 20. C
 Image: Comparison of the second sec

Constituent	Arithmetic mean concentration in 57 Chicago soil samples	Arithmetic mean concentration in 106 soil samples collected within 500 kilometers of Chicago	Concentration factor in Chicago soils relative to soils within 500 kilometers of Chicago
A _L ()	4.8	4.86	0.99
A e c (/K)	19.5	6.56	2.97
B _ι (/)	427.3	499.3	.86
B ₁ (/)	2.2	1.2	1.83
Cac (e ece)	4.06	.82	4.95
T a Ca (e e ce)	7.61	2.55	2.98
C ₁ (/)	71.2	44.1	1.61
C (/)	11.	8.51	1.29
C e (/K)	150.5	18.4	8.18
G ₁ (/)	13.9	12.8	1.09
Ι ()	3.3	1.85	1.78
p (/)	25.7	36.2	.71
Lead (/K)	395.3	19.4	20.38
p ₁ (/)	31.3	19.74	1.59
Ma e (e ece)	2.47	.4	6.18
(/)	583.4	460.4	1.27
Me c (/K)	.64	.14	4.57
M de (/K)	5.74	2.46	2.33
N c e (/K)	36.44	15.95	2.28
P (e e ce)	.086	.043	2.00
ι ()	1.75	1.56	1.12
ι (/)	8.6	8.2	1.05
Se e (/K)	1.	.46	2.17
ι ()	.52	.73	.71
ι (/)	113.6	122.1	.93
Τ (/)	9.	8.2	1.10
Τ _ι ()	.22	.27	.81
ι (/)	76.5	61.1	1.25
ι (/)	15.8	20.8	.76
$\mathbf{Z} \mathbf{c} (/\mathbf{K})$	396.68	53.57	7.40

Table 21. P 🕴 🧃 👔		11 _ 1		1 -	1¢	.1 .1	-1 FL %	, C¶. g. ,
1.3	, ,	,	,	,	, ,		,	,

[Positive coefficients greater than 0.70 in bold]

t			· •													
	ALUMINUM	ARSENIC	BARIUM	CALCIUM	CARBONATE CARBON	ORGANIC CARBON	CERIUM	CHROMIUM	COBALT	COPPER	GALLIUM	IRON	LANTHANUM	LEAD	LITHIUM	MAGNESIUM
App I	1.00															
A E IC	13	1.00														
BA I	.71	.13	1.00													
CADCI CABATE	73	.07	71	1.00												
CA B GA IC	75	.07	73	.99	1.00											
CA B	.02	.19	.13	17	26	1.00										
CE I	.94	17	.69	62	62	14	1.00									

58 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Appendix 1. Polynuclear aromatic hydrocarbons in ambient surface soils, Chicago, Illinois.

62 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Appendix 1. P 🙏 🦻 🗜 🕺 🥵 🖓 🤄 🗛 🗛 🖓 🖓 🗛 🔥 🕵 🖓 🖓 🖓 🖓	C .1.	Ň
---	-------	---

[µg/Kg, micrograms per kilogram; 15 U, constituent not detected and detection limit; J, estimated; D, duplicate sample]

		Constituent										
San Nun	nple nber	Benzo(a)- anthracene (μg/Kg)	Chrysene (µg/Kg)	Benzo(b)- fluoranthene (µg/Kg)	Benzo(k)- fluoranthene (μg/Kg)	Benzo(a)- pyrene (µg/Kg)	Dibenzo- (a,h)anthra- cene (µg/Kg)	Benzo- (g,h,i)- perylene (μg/Kg)	Indeno- (1,2,3-cd)- pyrene (μg/Kg)			
AH-	-01	600	720	1,000	450	760	190	410	470			
AH-	-02	200	250	340	220	260	93	200	210			
AH-	-03	720	800	920	650	850	140	430	500			
AH-	-04	740	910	1,100	900	1,000	150	490	610			
AH-	-05	510	650	760	530	680	110	360	430			
AH-	-06	9,100	11,000	14,000	9,000	12,000	770	6,900	8,100			
AH-	-07	47	54	100	53	81	68	120	110			
AH-	-08	180	220	260	220	250	96	170	200			
AH-	-09	2,700	2,900	3,000	2,200	3,000	290	1,000	1,300			
AH-	-10	26	31	40	36	39	62	110	98			
AH-	-11	43	61	63	59	66	62	100	110			
AH-	-12	110	120	150	95	130	68	130	140			
AH-	-13	3,400	3,500	4,000	1,900	3,700	640	1,300	1,500			
AH-	-14	5,100	5,800	7,200	4,400	6,200	510	2,000	4,300			
AH-	-15	160	180	240	140	200	82	160	170			
AH-	-16	59	79	97	58	81	69	120	130			
AH-	-17	10,000	9,300	13,000	7,100	11,000	870	7,100	8,100			
AH-	-17D	8,400	8,200	9,400	8,600	9,700	780	5,500	6,100			
AH-	-18	4,900	5,500	6,800	3,600	5,600	520	3,700	4,100			
AH-	-19	77	99	99	70	95	70	130	140			
AH-	-20	140	160	190	100	160	28	120	130			
AH-	-21	210	230	300	170	250	44	180	210			
AH-	-21D	230	260	330	190	280	52	200	240			
AH-	-22	16,000	15,000	18,000	10,000	17,000	1,600	8,100	9,900			
AH-	-23	880	980	970	1,000	1,000	110	490	620			
AH-	-24	2,500	2,600	3,700	2,000	3,000	290	1,500	1,800			
AH-	-25	240	280	340	210	280	59	210	250			
AH-	-25D	280	330	380	270	340	70	230	280			
AH-	-26	550	540	530	340	570	71	280	370			
AH-	-27	3,800	4,200	5,700	2,900	4,200	760	3,200	3,800			
AH-	-28	2,000	1,900	2,600	1,300	2,100	280	920	1,100			
AH-	-29	1,700	1,700	1,900	1,300	1,800	200	730	920			
AH-	-30	1,700	1,600	1,600	1,500	1,600	280	640	830			
AH-	-31	2,400	2,500	3,000	1,700	2,400	370	930	1,200			
AH-	-32	6,400	6,600	6,000	6,300	6,600	940	3,600	4,600			
AH-	-33	1,300	1,300	1,300	1,400	1,400	220	570	700			

Acenaph- Acenaph- Sample Naphthalene thylene thene					Constituent
Number (µg/Kg) (µg/Kg) (µg/Kg)	Sample Number	Naphthalene (µg/Kg)	Acenaph- thylene (µg/Kg)	Acenaph- thene (μg/Kg)	

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, 64 Chicago, Illinois: 2001-02
Appendix 1. P 🚬 🕴 🕖	1 1 1	an akty	,C¶.g.,L_N	C .1.1
		-		

[µg/Kg, micrograms per kilogram; 15 U, constituent not detected and detection limit; J, estimated; D, duplicate sample]

	Constituent											
Sample Number	Benzo(a)- anthracene (μg/Kg)	Chrysene (µg/Kg)	Benzo(b)- fluoranthene (µg/Kg)	Benzo(k)- fluoranthene (μg/Kg)	Benzo(a)- pyrene (μg/Kg)	Dibenzo- (a,h)anthra- cene (µg/Kg)	Benzo- (g,h,i)- perylene (μg/Kg)	Indeno- (1,2,3-cd)- pyrene (μg/Kg)				
AH33D	1,300	1,300	1,700	950	1,400	220	540	700				
AH34	1,500	1,600	2,100	720	1,600	220	920	1,200				
AH35	8,100	7,800	9,000	4,000	7,500	1,100	4,100	5,000				
AH36	6,100	6,400	8,500	3,900	6,600	1,100	4,000	5,200				
AH37	1,800	1,500	2,600	1,300	1,700	130	570	870				
AH38	300	310	440	490	490	140	220	360				
AH-CE-1	320	380	480	330	410	38	200	270				
AH-CE-2	30	35	50	36	41	8	24	33				
AH-CE-3	430	430	550	410	480	48	200	260				
AH-CE-4	1,400	1,400	1,800	1,400	1,600	120	560	790				
AH-CE-4D	1,000	1,000	1,300	950	1,200	130	560	770				
AH-CE-5	3,200	2,900	3,400	2,900	3,600	260	1,200	1,500				
AH-CE-6	880	850	1,200	820	950	120	580	700				
AH-CE-7	3,300	3,200	4,200	2,700	3,200	340	1,200	1,600				
AH-CE-8	830	730	830	620	780	78	290	410				
AH-CE-9	28	36	50	44	45	10	24	31				
AH-CE-10	210	200	320	200	250	27	99	130				
AH-CE-11	210	220	350	230	270	27	110	160				
AH-CE-12	210	200	370	290	290	85	130	220				
AH-CE-13	1,800	1,800	3,900	2,900	3,500	200	820	1,200				
AH-CE-14	1,300	1,300	2,100	1,800	1,600	200	390	580				
AH-CE-15	1,600	1,800	2,600	2,100	2,100	220	1,300	1,500				
AH-CE-15D	810	790	1,500	960	1,200	220	560	780				
AH-CE-16	240	260	430	380	430	130	310	300				
AH-CE-17	360	360	540	580	550	160	430	470				
AH-CE-18	4,100	3,700	4,000	3,200	4,100	980	2,100	3,100				
AH-CE-19	370,000	350,000	550,000	280,000	460,000	41,000	290,000	370,000				

Appendix 2. Inorganic constituents in ambient surface soils, Chicago, Illinois. ,C¶.g.,I...

		Constituent									
Sample	e Number	Carbon Dioxide (percent)	Carbonate Carbon (percent)	Total Car- bon (percent)	Total Organic Carbon (percent)	Aluminum (percent)	Calcium (percent)	Iron (percent)	Magnesium (percent)		
AH-	-01	0.91	0.25	6.01	5.76	5.66	1.27	2.78	0.92		
AH-	-02	2.02	.55	4.50	3.95	5.83	1.77	2.29	1.16		
AH-	-03	2.38	.65	5.64	4.99	6.90	1.94	3.50	1.47		
AH-	-04	3.77	1.03	6.79	5.76	5.68	2.65	2.63	1.77		
AH-	-05	16.30	4.45	7.77	3.32	4.33	7.95	2.57	5.25		
AH-	-06	16.40	4.48	11.50	7.02	4.58	8.95	3.19	5.65		
AH-	-07	1.97	.54	2.49	1.95	7.13	1.68	3.23	1.43		
AH-	-08	1.54	.42	4.85	4.43	6.26	1.48	2.90	1.18		
AH-	-09	1.88	.51	5.99	5.48	5.89	1.70	2.97	1.23		
AH-	-10	.14	.04	2.21	2.17	6.04	.62	2.99	.59		
AH-	-11	2.76	0.75	4.88	4.13	5.54	2.34	2.83	1.39		
AH-	-12	.35	.10	2.39	2.29	6.12	.86	2.88	.74		
AH-	-13	3.15	.86	5.13	4.27	6.74	2.64	3.63	1.71		
AH-	-14	3.38	.92	6.95	6.03	6.52	2.77	3.94	1.68		
AH-	-15	3.49	.95	3.50	2.55	6.39	2.66	3.30	1.67		
AH-	-16	1.46	0.40	3.32	2.92	6.48	1.67	3.21	1.04		
AH-	-17	4.40	1.20	8.26	7.06	5.42	4.15	5.27	1.82		
AH-	-17D	4.54	1.24	7.94	6.70	5.32	4.58	5.61	1.82		
AH-	-18	3.85	1.05	16.00	14.95	3.78	3.43	14.50	1.52		
AH-	-19	1.33	.36	2.62	2.26	6.49	1.32	3.05	1.16		
AH-	-20	4.23	1.15	9.30	8.15	4.58	3.30	3.83	1.76		
AH-	-21	.76	.21	3.21	3.00	6.71	1.15	3.00	.94		
AH-	-21D	.80	.22	3.16	2.94	6.78	1.18	3.02	.98		
AH-	-22	15.10	4.12	7.93	3.81	4.82	8.55	2.76	4.58		
AH-	-23	1.83	.50	5.91	5.41	5.86	1.80	3.07	1.09		
AH-	-24	0.61	0.17	5.69	5.52	6.26	1.15	3.19	0.94		
AH-	-25	.90	.25	3.55	3.30	5.78	1.15	2.63	.86		
AH-	-25D	.94	.26	3.56	3.30	5.83	1.23	2.70	.95		
AH-	-26	6.97	1.90	7.98	6.08	4.92	4.42	2.75	2.53		
AH-	-27	9.55	2.61	10.50	7.89	4.73	5.45	4.18	3.46		
AH-	-28	2.18	0.59	6.07	5.48	7.00	1.89	3.98	1.67		
AH-	-29	26.90	7.34	9.77	2.43	3.09	12.90	2.24	8.06		
AH-	-30	1.97	.54	4.73	4.19	6.44	1.79	4.28	1.22		
AH-	-31	3.07	.84	10.90	10.06	4.56	2.41	5.75	1.39		
AH-	-32	5.49	1.50	8.99	7.49	5.89	3.96	3.67	2.09		

Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, 68 Chicago, Illinois: 2001-02

 Appendix 2. I. 1
 Image: Solution in the sample; <50, constituent not detected and detection limit]</td>

-	Constituent									
Sample Number	Carbon Dioxide (percent)	Carbonate Carbon (percent)	Total Car- bon (percent)	Total Organic Carbon (percent)	Aluminum (percent)	Calcium (percent)	Iron (percent)	Magnesium (percent)		
AH33	4.25	1.16	8.38	7.22	5.97	3.10	3.36	1.95		
AH33D	4.30	1.17	8.34	7.17	5.86	3.18	3.31	1.94		
AH34	6.89	1.88	5.53	3.65	5.44	3.85	2.79	2.82		
AH35	5.68	1.55	11.50	9.95	7.46	4.55	5.51	1.94		
AH36	6.97	1.90	11.80	9.90	4.30	4.53	4.32	2.59		
AH37	7.35	2.01	6.94	4.93	2.60	3.89	2.15	2.16		
AH38	.65	.18	7.35	7.17	5.26	1.23	2.44	.81		
AH-CE-01	16.00	4.37	13.40	9.03	2.33	7.38	1.23	4.60		
AH-CE-02	29.20	7.97	8.19	.22	1.21	12.30	.56	7.84		
AH-CE-03	18.40	5.02	9.11	4.09	3.44	8.10	2.38	5.44		
AH-CE-04	40.00	10.92	12.10	1.18	0.83	15.90	0.80	10.80		

Appendix 2. L 🐧	-9.9.	.1.1.1.1	-1 +29	, C ¶. <u>o</u> .	, L.A. C.A.X
-----------------	-------	----------	--------	-------------------	--------------

		Constituent									
Sampl	e Number	Phosphoru (percent)	is Potassii (percer	um Sodium nt) (percent) Sulfur t) (percent)	Titanium (percent)	Arsenic (milligrams per kilogram)	Barium (milligram per kilogram	Beryllium ns (milligrams per) kilogram)	_	
AH-	-01	0.080	2.04	0.56	0.08	0.273	15	445	2		
AH-	-02	.090	1.84	.74	.05	.273	<10	449	1		
AH-	-03	.070	2.45	.47	.09	.278	16	453	2		
AH-	-04	.175	2.19	.49	.10	.247	10	403	2		
AH-	-05	.070	1.71	.56	.06	.210	12	278	1		
AH-	-06	0.090	1.62	0.67	0.12	0.221	12	403	2		
AH-	-07	.055	2.63	.59	.05	.305	11	475	2		
AH-	-08	.085	2.31	.76	.06	.284	<10	481	2		
AH-	-09	.110	2.24	.70	.08	.252	11	463	2		
AH-	-10	.065	1.98	.81	< 0.05	.305	13	540	1		
AH-	-11	0.095	1.84	0.61	0.05	0.268	11	499	1		
AH-	-12	.065	1.88	.69	< 0.05	.310	10	543	1		
AH-	-13	.210	2.60	.51	.09	.257	20	572	2		
AH-	-14	.100	2.28	.54	.13	.268	12	666	3		
AH-	-15	.055	2.34	.52	.05	.289	17	442	2		
AH-	-16	.070	2.43	0.53	0.05	0.326	15	485	2		
AH-	-17	.120	1.91	.45	.16	.252	<10	426	2		
AH-	-17D	.130	1.87	.44	.14	.247	<10	436	2		
AH-	-18	.240	.94	.64	.30	.200	25	477	3		
AH-	-19	.060	2.45	.58	< 0.05	.305	13	505	2		
AH-	-20	0.140	1.55	0.70	0.14	0.210	19	397	2		
AH-	-208.9(1)	ТТ	2583.4(.05)-2583.4(.289)-2083 T	T 2583.4	(45 -17 .9(2	2) T 0 -	160)-2583.4(.57683.4(

70 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

					Const	ituent			
Sampl	e Number	Bismuth (milligrams per kilogram)	Cadmium (milligrams per kilogram)	Cesium (milligrams per kilogram)	Chromium (milligrams per kilogram)	Cobalt (milligrams per kilogram)	Copper (milligrams per kilogram)	Europium (milligrams per kilogram)	Gallium (milligrams per kilogram)
AH-	-01	<50	<2	63	65	11	43	<2	14
AH-	-02	<50	<2	61	53	10	37	<2	15
AH-	-03	<50	<2	63	75	13	57	<2	18
AH-	-04	<50	3	54	66	11	69	<2	17
AH-	-05	<50	<2	41	44	9	51	<2	16
AH-	-06	<50	6	44	78	12	343	<2	17
AH-	-07	<50	<2	72	70	14	39	<2	19
AH-	-08	<50	<2	62	64	12	35	<2	16
AH-	-09	<50	<2	61	64	11	43	<2	16
AH-	-10	<50	<2	64	54	11	28	<2	13
AH-	-11	<50	<2	61	56	9	36	<2	16
AH-	-12	<50	<2	71	68	11	38	<2	15
AH-	-13	<50	<2	69	78	14	66	<2	20
AH-	-14	<50	<2	67	102	13	73	<2	17
AH-	-15	<50	<2	68	63	14	42	<2	16
AH-	-16	<50	<2	75	66	15	36	<2	15
AH-	-17	<50	<2	55	340	11	75	<2	16
AH-	-17D	<50	<2	60	387	11	76	<2	13
AH-	-18	<50	7	38	192	16	395	<2	14
AH-	-19	<50	<2	69	61	12	42	<2	16
AH-	-20	<50	<2	43	66	11	67	<2	13
AH-	-21	<50	<2	70	76	11	44	<2	18
AH-	-21D	<50	<2	73	72	12	47	<2	17
AH-	-22	<50	<2	46	57	13	89	<2	15
AH-	-23	<50	<2	63	69	12	74	<2	16
AH-	-24	<50	<2	64	73	13	57	<2	17
AH-	-25	<50	<2	58	59	10	35	<2	16
AH-	-25D	<50	<2	63	61	10	37	<2	14
AH-	-26	<50	<2	51	64	11	48	<2	10
AH-	-27	<50	5	48	94	12	2,780	<2	14
AH-	-28	<50	2	70	78	16	117	<2	23
AH-	-29	<50	3	33	50	9	208	<2	8
AH-	-30	<50	<2	66	76	14	99	<2	18
AH-	-31	<50	<2	44	82	13	214	<2	17
AH-	-32	<50	<2	60	79	14	134	<2	18

72 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

 Appendix 2. Ling
 Image: Solution in the sample; <50, constituent not detected and detection limit]</td>

 C.1.

				Const	ituent			
Sample Number	Bismuth (milligrams per kilogram)	Cadmium (milligrams per kilogram)	Cesium (milligrams per kilogram)	Chromium (milligrams per kilogram)	Cobalt (milligrams per kilogram)	Copper (milligrams per kilogram)	Europium (milligrams per kilogram)	Gallium (milligrams per kilogram)
AH33	<50	<2	60	77	12	84	<2	17
AH33D	<50	<2	59	81	14	83	<2	18
AH34	<50	<2	54	61	11	46	<2	16
AH35	<50	3	104	129	26	234	3	23
AH36	<50	7	45	118	12	355	<2	17
AH37	<50	3	15	67	7	73	<2	7
AH38	57	<2	52	45	12	35	<2	13
AH-CE-01	<50	3	19	29	8	47	<2	6
AH-CE-02	<50	<2	<5	8	5	9	<2	<4
AH-CE-03	<50	4	23	90	10	66	<2	10
AH-CE-04	<50	3	<5	20	5	98	<2	<4
AH-CE-04D	<50	2	<5	17	4	77	<2	<4
AH-CE-05	<50	7	23	131	14	475	<2	11
AH-CE-06	<50	6	8	87	5	419	<2	6
AH-CE-07	<50	7	16	88	14	484	<2	11
AH-CE-08	<50	<2	11	19	5	12	<2	7
AH-CE-09	<50	<2	60	55	13	25	<2	17
AH-CE-10	<50	<2	18	31	4	24	<2	8
AH-CE-11	<50	<2	13	23	5	24	<2	<4
AH-CE-12	<50	<2	47	54	13	78	<2	15
AH-CE-13	<50	5	13	82	16	45	<2	11
AH-CE-14	<50	<2	29	45	10	63	<2	9
AH-CE-15	<50	<2	41	43	11	46	<2	12
AH-CE-15D	<50	<2	38	42	9	42	<2	11
AH-CE-16	<50	<2	16	26	6	13	<2	6
AH-CE-17	<50	<2	25	56	6	59	<2	8
AH-CE-18	<50	3	30	45	9	200	<2	11
AH-CE-19	<50	3	6	26	5	59	<2	5

 Appendix 2. Ling
 Image: Solution of the sample; <50, constituent not detected and detection limit]</td>

 [percent, percent-weight; D, duplicate sample; <50, constituent not detected and detection limit]</td>

 C .1.1

		Constituent								
Sampl	e Number	Gold (milligrams per kilogram)	Holmium (milligrams per kilogram)	Lanthanum (milligrams per kilogram)	Lead (milligrams per kilogram)	Lithium (milligrams per kilogram)	Manganese (milligrams per kilogram)	Mercury (milligrams per kilogram)	Molybde- num (milligrams per kilogram)	
AH-	-01	<8	<4	32	93	36	561	0.11	4	
AH-	-02	<8	<4	33	40	32	327	.09	2	
AH-	-03	<8	<4	34	198	52	461	.86	5	
AH-	-04	<8	<4	30	283	43	365	.31	4	
AH-	-05	<8	<4	23	150	29	433	.17	4	
AH-	-06	<8	<4	25	654	37	628	0.32	6	
AH-	-07	<8	<4	35	42	52	390	.07	5	
AH-	-08	<8	<4	33	87	40	507	.09	3	
AH-	-09	<8	<4	31	224	38	582	.38	3	
AH-	-10	<8	<4	34	27	28	751	.08	3	
AH-	-11	<8	<4	33	35	30	699	0.08	3	
AH-	-12	<8	<4	36	39	29	651	.19	2	
AH-	-13	<8	<4	34	323	51	524	1.89	6	
AH-	-14	<8	<4	33	504	55	821	.33	6	
AH-	-15	<8	<4	34	47	42	694	.07	5	
AH-	-16	<8	<4	36	65	44	795	0.08	5	
AH-	-17	<8	<4	30	240	39	3,250	.18	15	
AH-	-17D	<8	<4	33	246	38	4,090	.16	17	
AH-	-18	<8	<4	21	1,690	28	2,330	.93	14	
AH-	-19	<8	<4	35	44	43	634	.07	3	
AH-	-20	<8	<4	24	239	25	802	0.25	4	
AH-	-21	<8	<4	34	72	51	427	.27	3	
AH-	-21D	<8	<4	35	70	51	420	.59	3	
AH-	-22	<8	<4	25	303	36	541	1.91	6	
AH-	-23	<8	<4	33	198	39	442	.28	5	
AH-	-24	<8	<4	34	109	38	683	0.17	5	
AH-	-25	<8	<4	31	82	33	471	.06	2	
AH-	-25D	<8	<4	33	90	35	549	.06	3	
AH-	-26	<8	<4	27	105	31	459	.14	6	
AH-	-27	<8	<4	24	1,310	33	697	1.65	11	
AH-	-28	<8	<4	35	275	49	415	0.39	7	
AH-	-29	<8	<4	18	473	25	512	.70	5	
AH-	-30	<8	<4	34	355	42	544	.25	6	
AH-	-31	<8	<4	24	469	26	631	.31	7	
AH-	-32	<8	<4	29	528	42	495	.21	7	

74 Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

 Appendix 2. Ling
 Image: Solution in the sample; <50, constituent not detected and detection limit]</td>

 C.1.

				Const	ituent			
Sample Number	Gold (milligrams per kilogram)	Holmium (milligrams per kilogram)	Lanthanum (milligrams per kilogram)	Lead (milligrams per kilogram)	Lithium (milligrams per kilogram)	Manganese (milligrams per kilogram)	Mercury (milligrams per kilogram)	Molybde- num (milligrams per kilogram)
AH33	<8	<4	31	281	46	411	0.44	6
AH33D	<8	<4	31	283	45	405	.43	6
AH34	<8	<4	28	175	36	533	.12	4
AH35	<8	<4	52	1,270	67	710	5.13	12
AH36	<8	<4	24	1,910	28	642	.75	6
AH37	<8	<4	13	1,000	12	390	0.25	4
AH38	<8	<4	28	85	32	484	.08	3
AH-CE-01	<8	<4	13	260	13	240	.12	2
AH-CE-02	<8	<4	10	13	7	196	< 0.02	<2
AH-CE-03	<8	<4	18	886	24	335	13.10	5
AH-CE-04	<8	<4	7	270	5	166	0.08	<2
AH-CE-04D	<8	<4	6	200	5	150	.12	<2
AH-CE-05	<8	<4	19	1,450	20	415	.38	13
AH-CE-06	<8	<4	11	1,500	8	327	.21	6
AH-CE-07	<8	<4	17	1,680	17	517	.41	15
AH-CE-08	<8	<4	12	70	7	276	0.03	<2
AH-CE-09	<8	<4	32	30	42	479	.03	3
AH-CE-10	<8	<4	12	98	8	241	.28	<2
AH-CE-11	<8	<4	13	66	15	236	.02	2
AH-CE-12	<8	<4	28	167	40	368	.06	6
AH-CE-13	<8	<4	21	49	32	579	0.03	17
AH-CE-14	<8	<4	18	977	22	405	.11	6
AH-CE-15	<8	<4	23	135	32	346	.10	6
AH-CE-15D	<8	<4	22	114	32	333	.07	6
AH-CE-16	<8	<4	11	30	8	311	.03	2
AH-CE-17	<8	<4	17	332	14	954	0.48	4
AH-CE-18	<8	<4	20	428	22	414	.44	3
AH-CE-19	<8	<4	10	90	7	320	.09	<2

Appendix 2. 🖃 🎄 👎 📭		ke¶. ,C¶.	.g., I., C.1.	Ň
---------------------	--	-----------	---------------	---

	Constituent								
Sample Number	Niobium (milligrams per kilogram)	Neodymium (milligrams per kilogram)	Nickel (milligrams per kilogram)	Scandium (milligrams per kilogram)	Selenium (milligrams per kilogram)	Silver (milligrams per kilogram)	Strontium (milligrams per kilogram)	Tantalum (milligrams per kilogram)	
AH01	9	27	29	10	0.7	<2	98	<40	
AH02	7	31	27	9	.7	<2	102	<40	
AH03	7	30	41	12	1.0	<2	100	<40	
AH04	8	27	37	10	.8	<2	125	<40	
AH05	10	24	26	7	.6	<2	100	<40	
AH06	11	24	52	8	0.9	<2	123	<40	
AH07	6	29	38	13	.5	<2	98	<40	
AH08	8	30	30	11	.7	<2	99	<40	
AH09	6	32	29	10	.8	<2	107	<40	
AH10	10	32	25	9	.7	<2	98	<40	
AH11	7	28	24	9	0.7	<2	122	<40	
AH12	10	31	27	10	.6	<2	99	<40	
AH13	12	33	41	13	1.2	<2	106	<40	
AH14	13	31	45	12	1.3	<2	106	<40	
AH15	9	30	32	11	.8	<2	104	<40	
AH16	10	32	31	12	0.9	<2	94	<40	

⁷⁶ Concentrations of Polynuclear Aromatic Hydrocarbons and Inorganic Constituents in Ambient Surface Soils, Chicago, Illinois: 2001-02

Appendix 2. L 🗯 🤅	1		.1	.1	-1 kt	9.	, C	1· Q.	, I	.1
-------------------	----------	--	----	----	-------	----	-----	-------	-----	----

Image: Apple Number Therrow fulligrams of the prese biologies of the prese		Constituent								
Sample Number kilogram)		Thorium (milligrams per	Tin (milligrams per	Uranium (milligrams per	Vanadium (milligrams per	Ytterbium (milligrams per	Yttrium (milligrams per	Zinc (milligrams per		
AH -33 8 <50 <100 91218 348 AH $-33D$ 8 <50 <100 88 218 339 AH -34 <6 <50 <100 81 2 17 191 AH -35 13 <50 <100 145 3 38 $1,500$ AH -36 <6 <50 <100 79 1 16 $1,140$ AH -37 6 <50 <100 42 1 9 431 AH -38 11 <50 <100 71 2 16 133 AH-CE-01 7 <50 <100 35 <1 9 606 AH-CE-02 10 <50 <100 24 <1 6 100 AH-CE-03 8 101 <100 62 1 13 930 AH-CE-04 8 <50 <100 34 <1 7 242 AH-CE-05 11 <50 <100 33 <1 8 187 AH-CE-06 10 <50 <100 38 <1 8 1400 AH-CE-07 8 51 <100 77 <1 7 83 AH-CE-08 11 <50 <100 38 <1 9 142 AH-CE-10 8 <50 <100 34 <1 9 142 AH-CE-10 8 <50 <100 34 $<$	Sample Number	kilogram)	kilogram)	kilogram)	kilogram)	kilogram)	kilogram)	kilogram)		
AH $-33D$ 8 <50 <100 88218 339 AH -34 <6 <50 <100 81 2 17 191 AH -35 13 <50 <100 145 3 38 $1,500$ AH -36 <6 <50 <100 79 1 16 $1,140$ AH -37 6 <50 <100 42 1 9 431 AH -33 11 <50 <100 71 2 16 133 AH-CE-01 7 <50 <100 35 <1 9 606 AH-CE-02 10 <50 <100 24 <1 6 100 AH-CE-03 8 101 <100 62 1 13 930 AH-CE-04 8 <50 <100 34 <1 7 242 AH-CE-05 11 <50 <100 32 <1 8 187 AH-CE-06 10 <50 <100 38 <1 8 1400 AH-CE-07 8 51 <100 70 1 14 $1,690$ AH-CE-08 11 <50 <100 38 <1 9 142 AH-CE-09 10 <50 <100 34 <1 9 142 AH-CE-10 8 <50 <100 34 <1 9 142 AH-CE-10 8 <50 <100 34	AH33	8	<50	<100	91	2	18	348		
AH- -34 <6<50<10081217191AH- -35 13<50	AH33D	8	<50	<100	88	2	18	339		
AH- -35 13 <50 <100 145 3 38 $1,500$ AH- -36 <6 <50 <100 79 116 $1,140$ AH- -37 6 <50 <100 42 1 9 431 AH- -37 6 <50 <100 71 2 16 133 AH- -38 11 <50 <100 35 <1 9 606 AH-CE-01 7 <50 <100 35 <1 9 606 AH-CE-02 10 <50 <100 24 <1 6 100 AH-CE-03 8 101 <100 62 1 13 930 AH-CE-04 8 <50 <100 34 <1 7 242 AH-CE-04 8 <50 <100 32 <1 8 187 AH-CE-05 11 <50 <100 33 <1 8 1400 AH-CE-06 10 <50 <100 38 <1 8 $1,400$ AH-CE-07 8 51 <100 27 <1 7 83 AH-CE-08 11 <50 <100 30 <1 7 106 AH-CE-10 8 <50 <100 34 <1 9 142 AH-CE-11 <6 <50 <100 34 <1 9 142 AH-CE-13 8 <50 <100 58 2	AH34	<6	<50	<100	81	2	17	191		
AH- -36 <6 <50 <100 79 1 16 $1,140$ AH- -37 6 <50 <100 42 1 9 431 AH- -38 11 <50 <100 71 2 16 133 AH-CE-01 7 <50 <100 35 <1 9 606 AH-CE-02 10 <50 <100 24 <1 6 100 AH-CE-03 8 101 <100 62 1 13 930 AH-CE-04 8 <50 <100 34 <1 7 242 AH-CE-05 11 <50 <100 32 <1 8 187 AH-CE-06 10 <50 <100 33 <1 8 $1,400$ AH-CE-07 8 51 <100 70 1 14 $1,690$ AH-CE-08 11 <50 <100 37 <1 7 83 AH-CE-10 8 <50 <100 34 <1 9 142 AH-CE-11 <6 <50 <100 34 <1 9 142 AH-CE-13 8 <50 <100 82 2 15 174 AH-CE-15 11 <50 <100 58 2 13 251 AH-CE-15 11 <50 <100 58 2 14 163 AH-CE-15 11 <50 <100 58 2 1	AH35	13	<50	<100	145	3	38	1,500		
AH- $\cdot 37$ 6 < 50 < 100 42 19 431 AH- $\cdot 38$ 11 < 50 < 100 71 216133AH-CE-017 < 50 < 100 35 < 1 9 666 AH-CE-0210 < 50 < 100 24 < 1 6 100 AH-CE-038 101 < 100 62 1 13 930 AH-CE-048 < 50 < 100 34 < 1 7 242 AH-CE-05 11 < 50 < 100 32 < 1 8 187 AH-CE-06 10 < 50 < 100 73 2 16 $1,260$ AH-CE-078 51 < 100 70 1 14 $1,690$ AH-CE-08 11 < 50 < 100 27 < 1 7 83 AH-CE-108 < 50 < 100 30 < 1 7 106 AH-CE-11 < 6 < 50 < 100 34 < 1 9 142 AH-CE-138 < 50 < 100 34 < 1 9 142 AH-CE-15 11 < 50 < 100 58 2 13 251 AH-CE-15 11 < 50 < 100 58 2 14 163 AH-CE-15 11 < 50 < 100 65 2 14 163 AH-CE-16 10 < 50 < 100 34 < 1 8 89	AH36	<6	<50	<100	79	1	16	1,140		
AH3811 <50 <100 71216133AH-CE-017 <50 <100 35 <1 9606AH-CE-0210 <50 <100 24 <1 6100AH-CE-038101 <100 62113930AH-CE-048 <50 <100 34 <1 7242AH-CE-04D <6 <50 <100 32 <1 8187AH-CE-0511 <50 <100 732161,260AH-CE-0610 <50 <100 38 <1 81,400AH-CE-07851 <100 701141,690AH-CE-0811 <50 <100 27 <1 783AH-CE-108 <50 <100 34 <1 9142AH-CE-11 <6 <50 <100 34 <1 9142AH-CE-1213 <50 <100 82215174AH-CE-138 <50 <100 58213251AH-CE-1511 <50 <100 65214163AH-CE-1511 <50 <100 63214158AH-CE-1610 <50 <100 34 <1 889	AH37	6	<50	<100	42	1	9	431		
AH-CE-017 < 50 < 100 35 < 1 9 606 AH-CE-0210 < 50 < 100 24 < 1 6100AH-CE-038101 < 100 62 113930AH-CE-048 < 50 < 100 34 < 1 7242AH-CE-04D < 6 < 50 < 100 32 < 1 8187AH-CE-0511 < 50 < 100 732161,260AH-CE-0610 < 50 < 100 38 < 1 81,400AH-CE-07851 < 100 701141,690AH-CE-0811 < 50 < 100 27 < 1 783AH-CE-108 < 50 < 100 30 < 1 7106AH-CE-11 < 6 < 50 < 100 34 < 1 9142AH-CE-1213 < 50 < 100 82215174AH-CE-138 < 50 < 100 82213251AH-CE-1511 < 50 < 100 58213251AH-CE-1511 < 50 < 100 65214163AH-CE-1512 < 50 < 100 63214158AH-CE-1610 < 50 < 100 34 < 1 889	AH38	11	<50	<100	71	2	16	133		
AH-CE-02 10 <50	AH-CE-01	7	<50	<100	35	<1	9	606		
AH-CE-038101<10062113930AH-CE-048<50	AH-CE-02	10	<50	<100	24	<1	6	100		
AH-CE-048 <50 <100 34 <1 7 242 AH-CE-04D <6 <50 <100 32 <1 8 187 AH-CE-0511 <50 <100 73 2 16 $1,260$ AH-CE-0610 <50 <100 38 <1 8 $1,400$ AH-CE-078 51 <100 70 1 14 $1,690$ AH-CE-0811 <50 <100 27 <1 7 83 AH-CE-0910 <50 <100 88 3 17 80 AH-CE-108 <50 <100 30 <1 7 106 AH-CE-11 <6 <50 <100 34 <1 9 142 AH-CE-138 <50 <100 82 2 15 174 AH-CE-1511 <50 <100 58 2 13 251 AH-CE-1511 <50 <100 63 2 14 163 AH-CE-1512 <50 <100 63 2 14 158 AH-CE-16 10 <50 <100 34 <1 8 89	AH-CE-03	8	101	<100	62	1	13	930		
AH-CE-04D<6<50<10032<18187AH-CE-0511<50	AH-CE-04	8	<50	<100	34	<1	7	242		
AH-CE-0511<50<100732161,260AH-CE-0610<50	AH-CE-04D	<6	<50	<100	32	<1	8	187		
AH-CE-0610 <50 <100 38 <1 8 $1,400$ AH-CE-07851 <100 70114 $1,690$ AH-CE-0811 <50 <100 27 <1 783AH-CE-0910 <50 <100 8831780AH-CE-108 <50 <100 30 <1 7106AH-CE-11 <6 <50 <100 34 <1 9142AH-CE-1213 <50 <100 82215174AH-CE-138 <50 <100 124326490AH-CE-1511 <50 <100 58213251AH-CE-1511 <50 <100 65214163AH-CE-15D12 <50 <100 34 <1 889	AH-CE-05	11	<50	<100	73	2	16	1,260		
AH-CE-07851<100701141,690AH-CE-0811<50	AH-CE-06	10	<50	<100	38	<1	8	1,400		
AH-CE-0811<50<10027<1783AH-CE-0910<50	AH-CE-07	8	51	<100	70	1	14	1,690		
AH-CE-0910 <50 <100 8831780AH-CE-108 <50 <100 30 <1 7106AH-CE-11 <6 <50 <100 34 <1 9142AH-CE-1213 <50 <100 82215174AH-CE-138 <50 <100 124326490AH-CE-147 <50 <100 58213251AH-CE-1511 <50 <100 65214163AH-CE-15D12 <50 <100 63214158AH-CE-1610 <50 <100 34 <1 889	AH-CE-08	11	<50	<100	27	<1	7	83		
AH-CE-108<50<10030<17106AH-CE-11<6	AH-CE-09	10	<50	<100	88	3	17	80		
AH-CE-11<6<50<10034<19142AH-CE-1213<50	AH-CE-10	8	<50	<100	30	<1	7	106		
AH-CE-1213<50<10082215174AH-CE-138<50	AH-CE-11	<6	<50	<100	34	<1	9	142		
AH-CE-138<50<100124326490AH-CE-147<50	AH-CE-12	13	<50	<100	82	2	15	174		
AH-CE-147<50<10058213251AH-CE-1511<50	AH-CE-13	8	<50	<100	124	3	26	490		
AH-CE-1511<50<10065214163AH-CE-15D12<50	AH-CE-14	7	<50	<100	58	2	13	251		
AH-CE-15D12<50<10063214158AH-CE-1610<50	AH-CE-15	11	<50	<100	65	2	14	163		
AH-CE-16 10 <50 <100 34 <1 8 89	AH-CE-15D	12	<50	<100	63	2	14	158		
	AH-CE-16	10	<50	<100	34	<1	8	89		
AH-CE-17 12 <50 <100 50 2 11 528	AH-CE-17	12	<50	<100	50	2	11	528		
AH-CE-18 7 <50 <100 53 2 13 371	AH-CE-18	7	<50	<100	53	2	13	371		
AH-CE-19 6 <50 <100 34 <1 7 264	AH-CE-19	6	<50	<100	34	<1	7	264		