
Abstract The southern shore of Lake Michigan

is the type area for many of ancestral Lake

Michigan’s late Pleistocene lake phases, but

coastal deposits and features of the Algonquin

phase of northern Lake Michigan, Lake Huron,

and Lake Superior are not recognized in the area.

Isostatic rebound models suggest that Algonquin

phase deposits should be 100 m or more below

modern lake level. A relict shoreline, however,

exists along the lakeward margin of the Calumet

Beach that was erosional west of Deep River and

depositional east of the river. For this post-

Calumet shoreline, the elevation of basal fore-

shore deposits east of Deep River and the base of

the scarp west of Deep River indicate a slightly

westward dipping water plane that is centered at

~184 m above mean sea level. Basal foreshore

elevations also indicate that lake level fell ~2 m

during the development of the shoreline. The

pooled mean of radiocarbon dates from the

surface of the peat below post-Calumet shoreline

foreshore deposits indicate that the lake trans-

gressed over the peat at 10,560 ± 70 years B.P.

Pollen assemblages from the peat are consistent

with this age. The elevation and age of the post-

Calumet shoreline are similar to the Main

Algonquin phase of Lake Huron. Recent isostatic

rebound models do not adequately address a

high-elevation Algonquin-age shoreline along the

southern shore of Lake Michigan, but the

Goldthwait (1908) hinge-line model does.

Keywords Lake Michigan Æ Lake level Æ
Calumet beach Æ Calumet phase Æ Algonquin
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Introduction

Three relict shoreline complexes, consisting of

mainland-attached beaches, spits, barriers, and

beach ridges, occur in northwestern Indiana and

northeastern Illinois, arcing subparallel to the

modern shoreline of Lake Michigan (Fig. 1). From

most landward to lakeward, they are formally

known as the Glenwood, Calumet, and Toleston

Beaches. They were defined in their current usage

by Leverett (1897), who established reference
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lake-level elevations of ancestral Lake Michigan

for each shoreline at 195, 189, and 184.5 m above

mean sea level (AMSL), respectively. More recent

workers (Hansel et al. 1985; Hansel and Mickelson

1988; Schneider and Hansel 1990; Thompson 1990,

1992; Thompson and Baedke 1997) added chro-

nological control on the ages of these shorelines

using radiocarbon dating, and refined lake-level



Beach at Wicker Park (Highland, Indiana) near

the Illinois-Indiana state line. They suggested that

the similar elevation of these two features may

represent a former Algonquin water-plane in

southern Lake Michigan. Colman et al. (1994a),

however, dismissed this interpretation because of

inconsistencies in the age control of the shoreline.

Regardless of the rebound model and age control,

coastal features and deposits lakeward of the

Calumet Beach have been only partially ad-

dressed in reconstructions of past lake-level

change for the basin (e.g., Chrzastowski and

Thompson 1992, 1994). The main focus of this

study is to examine the geomorphological, sedi-

mentological, paleoecological, and radiocarbon

evidence for post-Calumet phase coastal features

and deposits along the Indiana shore of southern

Lake Michigan and to collect additional data to

support or refute their existence.

Methods

U.S. Geological Survey (USGS) 1:24,000-scale

topographic maps and 1938 aerial photos along

southern Lake Michigan in northwest Indiana

were examined to identify geomorphic features

associated with former shorelines. Landforms,

including beach ridges, terraces, and erosional

scarps, were traced. Particular attention was given

to the Calumet Beach complex and to proximal

lakeward features. Although northwestern

Indiana is heavily urbanized and industrialized,

relatively undisturbed sites in northwest Indiana

are present. In this study, north–south-oriented

(roughly onshore–offshore-oriented), transit-

surveyed topographic profiles were constructed

from the Calumet Beach lakeward at Wicker

Park, north of the former site of Crisman Sand

Company, Inc., and east of Mineral Springs Road

(Fig. 1). Elevations for the profiles were estab-

lished from U.S. Geological Survey and U.S.

National Park Service benchmarks and are re-

ported using the U.S. National Geodetic Vertical

Datum of 1929. Fourteen vibracores were col-

lected at strategic points along these profiles,

focusing on key geomorphic changes. A ground-

penetrating radar (GPR) line using a 250 MHz

Sensors and Software Inc. Noggin Smart Cart was

taken along the Wicker Park transect to obtain

preliminary stratigraphic information on the shallow

subsurface. GPR transect lines at the other two

sites were unsuccessful in imaging the subsurface

because of surface debris and tree roots.

Cores were transported back to the laboratory

where they were split, described, sampled, and

photographed. Latex peels were created from the



dune and beach ridge. A broad and slightly

undulating nearshore platform stretches lakeward

from the crest of the Calumet Beach for ~280 m

and abruptly terminates at a scarp where topo-

graphic elevations decrease 2.5 to 3 m to a second

flat platform (Fig. 2A). The scarp can be traced

eastward of Wicker Park for 15 km where it

terminates near the western edge of Deep River

(Fig. 1). At Wicker Park, eight cores were

collected and a 365-m-long GPR line was run

along a lakeward-oriented transect (Fig. 2A).

Cores along the transect at Wicker Park pen-

etrated to a light gray clayey diamicton with

quartzite and siltstone pebbles and granules that

is interpreted as subglacial till of the Lake Border

sequence (Brown and Thompson 1995). The dia-

micton is clearly identified on the GPR profile

where the GPR signal is rapidly dissipated and

reflected by the clay-rich nature of the deposit.

Landward of the scarp (Cores 325 to 327), the

diamicton is overlain by upper shoreface deposits

of lakeward-dipping subhorizontal and micro-

trough cross-stratified, lower fine- to upper fine-

grained sand, sandy gravel, and granular sand.

The position of these deposits lakeward of the

crest of the Calumet Beach suggests that they are

nearshore deposits associated with the Calumet

phase of ancestral Lake Michigan. Lakeward of

the scarp (Cores 329 to 332) is a mix of poorly

sorted and organic-rich muddy sand and sandy

gravel. Many of the clasts are locally derived from

the diamicton. No recognizable coastal facies

occur in these deposits, and they are interpreted

to be colluvial. The elevation of the surface of the

diamicton (Core 329) beneath the colluvium is

182.8 m AMSL.

The GPR profile shows a bowl-shaped scour at

an elevation of ~186 m AMSL beneath the toes-

lope of the Calumet Beach. The bowl-shaped

scour likely represents the location of the Calumet



phase foreshore deposits. These probable fore-

shore deposits were not cored because Ridge

Road follows the northern margin of the Calumet

Beach; consequently, the Calumet foreshore

deposits are inaccessible and probably disturbed

at this location. However, we estimate an eleva-

tion of 186 m for basal Calumet foreshore

deposits at Wicker Park based on the elevation of

the base of the scour in the GPR profile.

Crisman Sand

The Crisman Sand site is 0.5 km northeast of the

intersection of State Route 249 and Interstate 94

in northwestern Porter County, Indiana (Fig. 1).

In this area, a shore-parallel, 2- to 5-m-high,

topographic rise occurs 80 to 100 m lakeward of

the crest of the 10- to 15-m-high Calumet Beach.

Vibracores were collected on the crest and lake-

ward and landward toeslopes of this post-Calumet

beach ridge (Fig. 2B).

The two landward cores (Cores 333 and 334)

are capped by dune sediments, consisting of

structureless lower to upper fine-grained sand

with scattered rootlets throughout. The dune

sediments overlie ~1-m-thick foreshore deposits

of horizontally to subhorizontally stratified, upper

fine- to upper coarse-grained sand. Laminae are

defined by alternations in grain size, and the

foreshore sequence slightly coarsens downward.

Basal foreshore elevations for the Calumet Beach

in the two cores range from 186.4 m to 187 m

AMSL. Upper shoreface sediments below the

foreshore deposits consist primarily of upper fine-

grained sand alternating with more coarse-

grained sand to granular horizons. Sedimentary

structures in the upper shoreface sequence vary

from horizontal and subhorizontal parallel lami-

nae to ripple and micro-trough cross-stratification.

Facies within the core-collected lakeward of

the post-Calumet ridge (Core 335) are similar to

the two landward cores, but the elevation of the

basal foreshore deposits is much lower and the

dune deposits are overlain by ~2 m of lower to

upper fine-grained sand and marly granular sand.

The fine-grained sand and marly sand are inter-

preted as Nipissing-phase lagoonal (back-barrier

lacustrine) deposits because of their texture and

composition, and occurrence upsection, and

therefore, lakeward of the post-Calumet shoreline

but landward of the Nipissing-aged Toleston

Beach. Thompson (1990) recognized similar

deposits in the eastern part of the Indiana Dunes.

The elevation of the post-Calumet basal foreshore

sediments is 183.2 m. This elevation is 3 m to 4 m

below the elevation of the basal Calumet Beach

foreshore deposits in the two landward cores.

Mineral Springs Road

The Mineral Springs Road study site is 200 m

northeast of the intersection of U.S. Route 12 and

Mineral Springs Road in north-centratiatower f



foreshore elevations increase landward and range

from 185.2 m to 185.9 m AMSL. The foreshore

deposits overlie fibrous peat in the landward

cores, but in the more lakeward core the fore-

shore deposits overlie 0.3 m of horizontally

stratified, upper fine- to upper medium-grained





Crisman Sand study areas. At the Liverpool West

site, Calumet and post-Calumet deposits were

exposed in a currently flooded borrow pit. A

stratigraphic section for the Liverpool West site

(Schneider and Hansel, 1990, their fig. 7) shows a

basal till (diamicton) of the Lake Border se-



of strong ground-water influence (Andrus 1986;

Crum 1988), therefore, the AMS radiocarbon

date on Sphagnum remains should not be influ-

enced by any radiocarbon-dead carbonates pres-

ent in the ground water. Testate amoebae,

amoeboid protozoans that produce a decay-

resistant shell, provide additional support for only

limited ground-water influence at the surface of

the peatland. The distribution of testate amoebae

in Sphagnum-dominated peatlands is primarily

controlled by moisture conditions, and secondar-

ily by pH, trophic status, and other aspects of

water chemistry (Woodland et al. 1998; Mitchell

et al. 2000; Booth 2001, 2002; Charman 2001).

The species of testate amoebae recovered from

the peat all have optimum abundance today in

relatively dry and low pH habitats (Booth 2001,

2002). Together, the macrofossil and testate

amoeba data suggest that the peatland lakeward

of the Calumet Beach at Minerals Springs Road

was a Sphagnum-dominated poor fen or bog,

with little standing water except for upper por-

tions of Core 336. Upper portions of Core 336

were probably deposited under fluctuating

hydrologic conditions that may possibly have

been caused by the landward-translating post-

Calumet shoreline.

Pollen data collected from the peat in Cores

338 and 336 are consistent with the 14C age

determinations. Pollen assemblages prior to

~11,500 to 10,000 year B.P. in northern Indiana

and southern Michigan are characterized by high

Picea, Pinus, and Cyperaceae percentages (e.g.,

Williams 1974; Futyma 1988; Singer et al. 1996),

probably reflecting the dominance of open Picea

woodlands at this time (Webb et al. 1983). Be-

tween 11,000 year and 10,000 year B.P., a mixed

forest dominated by Picea, Betula, Fraxinus, and

Ulmus developed, and by 10,000 year B.P. forests

dominated by Pinus and Quercus became estab-

lished (Webb et al. 1983



sites and Mineral Springs Road are most likely

time-equivalent.

Radiocarbon dates collected from the surface of

the peat at Mineral Springs Road from this study

and Thompson (1990



Scenario 2

The retreat of the Lake Michigan ice lobe joined

Lake Michigan and Lake Huron at the Main

Algonquin level or one of the post-Algonquin

phase levels. Combined with Lake Huron, Lake

Michigan underwent similar stair-step lowerings

of lake level throughout the post-Algonquin as

glacial ice margin retreated from northern Lake

Huron (cf. Eshman and Karrow 1985). The post-

Calumet shoreline is time-equivalent to one of

the post-Algonquin phase levels.

Scenario 3

The post-Calumet shoreline formed during the

Moorhead phase influx from glacial Lake Agassiz



littoral sediment would not be available landward

of the Toleston Beach to build the post-Calumet

beach ridge. Scenarios 1 and 3 both involve rising

water-levels in the basin at the appropriate time

that could scarp the Calumet nearshore and

transgress palustrine sediments. It is not possible

at this time to distinguish between the two pos-

sible scenarios, but we favor Scenario 1 because

Scenario 3 may have been too short-lived to have

significant impact on shoreline behavior along the

southern shore of Lake Michigan.

Rebound

A high-elevation Algonquin-aged shoreline along

the southern shore of Lake Michigan is inconsis-

tent with the rebound model of Larsen (1987) and

favors the longstanding model of Goldthwait

(1908



Michigan. Rates of rebound increase northward

and slightly southward from this area. In effect,

the modern gage data illustrate vertical ground

movement that is somewhat similar to the Gold-

thwait (1908) hinge model (Fig. 5). This new

interpretation of historical gage data is based on

longer data sets and additional gaging sites that

were not available to Larsen (1987) or Clark et al.

(1994) who used Coordinating Committee (1977)

data.

The post-Calumet shoreline of southern Lake

Michigan is elevation-and time-equivalent to the

Main Algonquin of southern Lake Huron. The

gage data of the Coordinating Committee (2001)

show that the southern shore of Lake Huron is

relatively rising 9 to 12 cm/century more rapidly

than the southern tip of Lake Michigan (Fig. 5).

Following the Coordinating Committee (2001)

data and projecting modern rates into the past,

the post-Calumet shoreline of southern Lake

Michigan should be 9.5 m to 13 m lower than

coastal features and deposits of similar age along

southern Lake Huron. Baedke and Thompson

(2000), however, have shown that during the late

Holocene the southern shore of Lake Michigan

was rising more rapidly (19 cm/century) than the

Port Huron outlet before 1,400 cal year B.P. and

less rapidly (–7 cm/century) than the Port Huron

outlet after 1,400 cal year B.P. The pattern ob-

served by the Coordinating Committee (2001),

therefore, may hold for only the past 14 centuries,

yielding an elevation difference between southern

Lake Michigan and southern Lake Huron of no

more than –1.2 m to –1.7 m. Such a slight dif-

ference in the elevation of coastal features and

deposits between locales that are 450 km apart is

probably not recognizable.

Conclusions

Geomorphological, sedimentological, paleoeco-

logical, and radiocarbon data indicate that

deposits and features of a relict shoreline are

present along the lakeward margin of the Calumet

Beach in northwestern Indiana. This post-

Calumet shoreline was primarily erosional west of

Deep River but primarily depositional east of the

river. The elevations of basal foreshore deposits

east of Deep River and the base of the scarp west

of Deep River indicate a slightly westward-

dipping water plane for the shoreline that is

centered at ~184 m AMSL. Basal foreshore ele-

vations also indicate that lake level fell ~2 m

during the development of the shoreline. Post-

Calumet foreshore deposits overlie peat at

Mineral Springs Road, and the pooled mean of

radiocarbon dates from the surface of the peat

indicates that the lake transgressed over the peat

at 10,560 ± 70 year B.P. Pollen assemblages from

the peat are consistent with this age. The elevation

and age of the post-Calumet shoreline is similar

to the Main Algonquin phase of Lake Huron.

Recent isostatic rebound models do not ade-

quately address a high-elevation Algonquin-age

shoreline along the southern shore of Lake

Michigan. The long-standing hinge-line model of

Goldthwait (1908) is consistent with a high-
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