

Office of Chemical Safety 1021 N. Grand Avenue East Springfield, IL 62702

IEPA/ENV/98-009

TENTH ANNUAL

TOXIC CHEMICAL REPORT

THIS PAGE INTENTIONALLY LEFT BLANK

A summary of information contained in the Toxic Chemical Report Forms for calendar year 1996

> Illinois Environmental Protection Agency Springfield, Illinois

THIS PAGE INTENTIONALLY LEFT BLANK

This tenth anniversary of the Toxics Release Inventory reporting program, required under the federal Emergency Planning and Community Right-to-Know Act of 1986, is heralded by the seventh consecutive annual decrease in reported toxic chemical releases from Illinois facilities, and the ninth decrease in ten years. As reported by the United States Environmental Protection Agency in their 1996 Toxics Release Inventory Public Data Release, the decrease in on- and offsite releases by Illinois facilities from 1995 to 1996 ranks third in the nation.

The Illinois EPA, reporting facilities and the citizens of Illinois can all be proud of this significant accomplishment in toxics release reduction. The Toxics Release Inventory data continues to indicate a positive outcome of the combined efforts of the Illinois EPA in administration of release prevention and regulation programs, reporting facilities in their efforts to comply with mandatory and voluntary programs to achieve reductions, and citizens empowered by the data who demand a cleaner environment. This success story will continue through the efforts of all stakeholders to support and improve this remarkable program.

Mary A. Gade, Director

Illinois EPA

THIS PAGE INTENTIONALLY LEFT BLANK

Introduction	1
Emergency Planning and Community Right-to-Know Act	
Section 313 (Annual Toxic Chemical Release Reporting)	
Summary of Form R	
Explanation of Terms	
Facilities Covered	
Compliance	
Limitations on Use of Information	
Chemical Hazard Assessment	
Toxicology	3
Illinois EPA Regulatory Programs	5
Bureau of Air	
Bureau of Land	
Bureau of Water - Division of Water Pollution Control	6
Bureau of Water - Division of Public Water Supplies	7
Chemical Safety	7
Pollution Prevention	8
	_
Utilization of Form R Data	
Air Toxics Program	
Illinois Chemical Safety Act (ICSA)	
Storm Water Permits	
Hazardous Waste Site Operations	
Pollution Prevention	
Non-Routine Releases	
Freedom of Information Act	
Environmental Toxicology Act	
Health and Hazardous Substances Registry Act	
Information Support During Chemical Emergencies	
Local Safety Activities	
Chemical Exposure Screening	
Environmental Indicators	
Other Uses	10
Analysis of Form R Information	10
Changes in Reporting Requirements	
	10
Calendar Year 1996	10
Basis	10
	11
Chemicals	13
Standard Industrial Classification (SIC) Categories	
ZIP Codes - Air Emissions	

Trend Analysis, 1988-1996	16
Basis	16
Summary	17
Facilities	18
Chemicals	28
Standard Industrial Classification (SIC) Categories	40
ZIP Codes - Air Emissions	42
General Trends	46

Table 1 - Total Releases and Transfers, Top 20 Facilities	11
Table 2 - Total Releases and Transfers, Top 20 Chemicals	13
Table 3 - Total Releases and Transfers, Top 20 SIC Codes	14
Table 4 - Total Air Emissions, Top 20 ZIP Codes	15
Table 5 - Total Release and Transfer Amounts, Top 20 Facilities	19
Table 6 - Total Release and Transfer Amounts, Chemicals With Significant Human Health Effects, Top 20 Facilities	20
Table 7 - Total Release and Transfer Decreases, Top 20 Facilities	21
Table 8 - Total Release and Transfer Decreases, Chemicals With Significant Human Health Effects, Top 20 Facilities	22
Table 9 - Total Release and Transfer Increases, Top 20 Facilities	23
Table 10 - Total Release and Transfer Increases, Chemicals With Significant Human Health Effects, Top 20 Facilities	24
Table 11 - Source Reduction-Based Release and Transfer Decreases, Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96)	25
Table 12 - Source Reduction-Based Release and Transfer Decreases, Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96), Chemicals With Significant Human Health Effects	26
Table 13 - Facilities Demonstrating Environmental Excellence	27

Table 18 - Total On-Site Land Releases, Top 20 Chemicals	32
Table 19 - Total On-Site Land Releases, Chemicals With Significant Human Health Effects, Top 20 Chemicals	33
Table 20 - Total Off-Site Transfers to POTW, Top 20 Chemicals	34
Table 21 - Total Off-Site Transfers to POTW, Chemicals With Significant Human Health Effects, Top 20 Chemicals	35
Table 22 - Total Other Off-Site Transfers, Top 20 Chemicals (Does Not Include Amount Recycled)	36
Table 23 - Total Other Off-Site Transfers, Top 20 Chemicals, Chemicals With Significant Human Health Effects (Does Not Include Amount Recycled)	37
Table 24 - Total Releases and Transfers, Top 20 Chemicals (Does Not Include Amount Recycled)	38
Table 25 - Total Releases and Transfers, Top 20 Chemicals, Chemicals With Significant Human Health Effects (Does Not Include Amount Recycled)	39
Table 26 - Total Release and Transfer Amounts, Top 20 SIC Codes	40
Table 27 - Total Release and Transfer Amounts, Chemicals With Significant Human Health Effects, Top 20 SIC Codes	41
Table 28 - Total Air Emissions, Top 20 ZIP Codes	42
Table 29 - Total Air Emissions, Chemicals With Significant Human Health Effects, Top 20 ZIP Codes	44

Figure 1 - Total Releases & Transfers Distribution 12
Figure 2 - Total Releases and Transfers - All Chemicals 1
Figure 3 - Total Releases and Transfers - Chemicals with Significant Human Health Effects 18
Figure 4 - Cumulative Total of Air Emissions, 1988-1996, Top 10 ZIP Codes
Figure 5 - Cumulative Total of Air Emissions, 1988-1996, Top 10 ZIP Codes, Chemicals with Significant Human Health Effects
Figure 6 - Number of Facilities Reporting 4'
Figure 7 - Total Releases & Transfers - Facilities Reporting All Nine Years 47
Figure 8 - Total Releases & Transfers - All Facilities 44
Figure 9 - Total Air Emissions

Figure 10 - Total Water Discharges	49
Figure 11 - Total Releases to Land Onsite	49
Figure 12 - Total Offsite Transfers to POTW	50
Figure 13 - Total Other Offsite Transfers	50

Appendix A - Form R	51
Appendix B - Toxicology References	57
Appendix C - Chemical Information Sheets	59
Appendix D - Chemical References	65
Appendix E - Total Releases/Number of Reporting Facilities for Each County	67

Congress adopted Title III as part of the Superfund Amendments and Reauthorization Act of 1986 (SARA). Title III is known as the Emergency Planning and Community Right-to-Know Act of 1986 (EPCRA). EPCRA establishes programs to provide the public with important information on the hazardous chemicals in their communities, as well as providing emergency planning and notification requirements which help protect the public in the event of a release of hazardous chemicals.

(Annual Toxic Chemical Release Reporting)

Section 313 of EPCRA requires annual reports to be filed by certain companies which release any of over 600 listed toxic chemicals and compounds to the environment. This reporting covers routine releases that occur as a result of normal business operations within a calendar year, and non-routine or accidental releases.

In 1987, the Illinois General Assembly amended the Illinois Environmental Protection Act to provide for a coordinated state implementation of Section 313. This amendment also established an orderly procedure for the public to access this information. Under the Act, the Illinois Environmental Protection Agency (IEPA) is charged with the administration of Section 313 which requires industry to report annually to the U.S. EPA and state governments via the toxic chemical release form (Form R).

Form R includes all routine and non-routine releases of toxic chemicals to the air, water and land, as well as transfers of wastes to off-site treatment, storage and disposal facilities. The information reported is not necessarily derived from actual monitoring or measurements, but may be estimated from published emission factors, material balance calculations, or engineering calculations.

Form R information reported to the Illinois EPA is entered into a computer data base known as the Illinois Toxic Chemical Inventory (TCI), as required by the Illinois Environmental Protection Act.

A complete copy of Form R is enclosed as Appendix A. In general, the information to be provided by the reporting facility can be summarized as follows:

F45

TCI), as4ment, stor6ge and dEXPLANATIONnvirTERMSal Protection Act.

TCI), as80amended 200amenileSIC Codcopy o41.28eyRou be est763 of Form 228is EPA i42 Illino" - A twoTf -rec 0.1four4 -git nur

Budget in its "SIC Manual" which identifies an industry or industrial grouping. For example, the two-digit code "28" refers to the major group, "Chemicals and Allied Products," the three-digit "281" refers to the industry group, "Industrial Inorganic Chemicals," and the four-digit code "2812" refers to the specific industry, "Alkalies and Chlorine." The four-digit code identifies a specific facility rather than company.

" - A wastewater treatment facility which is owned by a unit of government.

" - Locations outside the boundaries of a facility to which wastes are transported for treatment or disposal.

" - A numeric designation assigned by the American Chemical Society's Chemical Abstracts Service which uniquely identifies a chemical or chemical compound.

" - Releases to the air that are not conveyed through stacks, vents, pipes, ducts or any other confined air stream. Examples include leakage from valves, pump seals, flanges, compressors, sampling connections, open ended lines, evaporative losses from surface impoundments and production lines, and releases from building ventilation systems.

" - Releases to the air which are conveyed through stacks, vents, ducts, pipes or other confined air streams, and includes storage tank emissions and air releases from control equipment.

" - An ongoing generation of waste which results from an industrial process or originates in an industrial area and which can be consistently described by the same physical and chemical characteristics.

" - Refers to landfilling, land treatment/application farming, surface impoundment or any other releases of a toxic chemical to land within the boundaries of a facility.

Facilities subject to reporting under Section 313 are those that have 10 or more full-time employees, that are in primary SIC codes 20 through 39, and that manufactured, processed or otherwise used a listed toxic chemical or chemical category in excess of specified threshold quantities.

The thresholds for reporting are different for users and manufacturers or processors of chemicals. For 1989 and subsequent reporting years, facilities using listed toxic chemicals in quantities over 10,000 pounds and facilities manufacturing or processing these chemicals in excess of 25,000 pounds are required to submit a Form R to both the Illinois EPA and the U.S. EPA by July 1 of the following year.

The SIC codes, which partly determine coverage, exclude utility companies, POTWs, and waste treatment, storage and disposal facilities from reporting under Section 313.

In order to manage and process all of the data being supplied by industry under Section 313, the Illinois EPA developed a system of quality control. Obvious errors in the submissions were considered to be either "entry" or "technical" errors.

"Entry" errors, such as pages missing from the Form R or a submittal on a wrong form, prohibited the data from being entered into the Agency's computer database. The Illinois EPA contacts the facility with a letter or by phone asking the owner or operator to correct the noted deficiency.

"Technical" errors are handled much the same way; however, the Agency is able to initially enter the data in the computer for later edits once the facility provides the correct information. It has been noted that numerous "technical" errors are made by facilities in the areas of CAS numbers and chemical name spellings.

To ensure data accuracy and completeness and timely submission of data, various compliance activities are planned or have been carried out.

It is emphasized that the reported toxic chemical release information on which this annual report is based includes total annual amounts of specific chemicals which are released to the environment. Reporting of information about concentrations or rate of release of toxic chemicals is not currently required. For that reason, this information cannot be used to assess specific instances of chemical exposure. Other factors such as meteorologic information must be known as well for such an assessment. See the next section for additional information.

Having the data now available under EPCRA is only the first step in assessing the potential chemical hazards in Illinois. In order to comprehend this information and begin to realize how it may impact communities, other factors must be considered. The chemical properties and associated toxicology of the chemicals of concern should be considered.

In order to assess the significance of a chemical release of any kind, it is necessary to discuss some fundamentals of toxicology. Above all, it is necessary to appreciate the most basic concept of toxicology, "the dose makes the poison."

This fact indicates that all substances are poisons, even common items like table salt and sugar, if the dose is high enough. On the other hand, some substances are poisonous at relatively low doses. Many of the chemicals addressed by EPCRA Section 313 fall into this category.

Even with relatively poisonous substances no harm can occur unless there has been exposure to the substance (the dose). If there is no exposure, no matter how potent the poison, there can be no toxic response. For most types of chemical exposures, the body has defense mechanisms to protect against or repair the damage done by the chemical. As long as the protection and repair mechanisms are able to keep up with the effects of the chemical, no adverse effect is seen.

Once this threshold is exceeded, however, the magnitude of the response will be in direct proportion to the magnitude of the exposure. Eventually, if the exposure is long enough or severe enough, the chemical causes failure of some organ or organ system, resulting in incapacitation and ultimately death of the organism. This

Specifically, it is thought that this theory pertains to damage of genetic material by chemicals, by biological agents such as certain viruses, or by physical agents such as ionizing radiation.

Repair mechanisms are known to exist for genetic material, and damage often occurs in areas of the genetic material having no expressed function. Nevertheless, the theory holds that even one unrepaired injury to a key area of the genetic material can result in a mutated cell. If this cell continues to divide, it will produce a colony of genetically different cells. The consequences of this type of damage can be expressed as a birth defect, a mutation, a tumor, or the damage can cause a "silent mutation" in which there is no obvious effect (if the damage occurs in an area of the genetic material having no expressed function).

Since it is impossible to detect a single injury or even small numbers of injuries to the genetic material at this time, scientific studies to determine whether a chemical can cause genetic damage are designed to expose laboratory test organisms to high doses of the chemical in order to maximize the chances of seeing a response. For cancer tests, the results of positive tests at the high doses (doses which are almost always much larger than expected levels of human exposures) are then extrapolated downward to doses which are relevant to expected human exposures.

These extrapolations are usually expressed as the extra risk of contracting cancer above the "background" cancer incidence due to exposure to low levels of the chemical, such as one extra chance in 100,000 or one in a million. An extra risk of one chance in a hundred thousand or one in one million is generally considered insignificant, since there exists for everyone a similarly small, unavoidable risk of death due to natural disasters such as floods, tornadoes, lightning, etc.

These concepts of:

- 1. "the dose makes the poison";
- 2. the requirement for a route of exposure;
- 3. there may be specific target organs for a chemical;
- 4. thresholds exist for some responses; and
- 5. there are insignificant risk levels for those chemicals for which no threshold is thought to exist;

are concepts which may be used as part of the regulatory control strategy for releases of toxic chemicals to the environment.

As a result of spills, derailments, past disposal practices, industrial accidents, illegal dumping, etc., environmental, public safety and health agencies must on occasion respond to unplanned chemical releases to the environment. In fact, accidental conditions which result in major releases of toxic chemicals to the environment were the driving force behind passage of EPCRAs Community Right-to-Know requirements.

In cases of chemical emergencies it is critical to know the chemical, physical and toxicological properties of the chemical(s) released so that appropriate counter-measures can be undertaken as soon as possible. Knowledge of all important routes of exposure, any critical target organs, any especially sensitive populations, threshold and acutely toxic levels, and antidotes are all important in planning what to do should an emergency arise.

Even in cases which are not of an emergency nature, such as some spill cleanups, illegal dumpings or past disposal practices, it is important to know the toxicological properties of the chemicals involved. Relevant routes of exposure, sensitive organs or populations, threshold levels or levels of insignificance, and the potential fate of the chemicals in all environmental media are important subjects which must be addressed in assessing the amount of cleanup which may be necessary in the incident. In some cases, where similar-acting chemicals are involved, special care must be taken to account for additive effects on sensitive organs.

Information on the toxicological aspects of many chemicals of concern and on toxicology in general can be obtained from the references listed in Appendix B. In addition, Illinois EPA has produced Chemical Information Sheets for certain chemicals which are listed in EPCRA Section 313. This information is summarized in Appendix C.

Many references are available which explain the properties and usage of various chemicals. An abbreviated listing of these references is presented in Appendix D.

The Illinois EPA operates a number of programs which identify, limit, monitor or otherwise control releases of various chemicals including many toxic chemicals regulated under Section 313. The following is a brief summary of those programs.

Pollutant Monitoring - A statewide system of air monitoring instruments provides information on various air pollutants either continuously or every two to six days depending on instrument operation.

Permitting - Permits are required for processes and machinery that emit air pollutants. Permit conditions are imposed which are designed to ensure that state emission restrictions are met. Approximately 16,000 such operating permits have been issued for 9,386 facilities in Illinois.

Chemical releases to the air can occur from point sources such as stacks and vents or from non-point (fugitive) sources such as emissions from open-top holding tanks, wastewater streams or ponds, or from production losses. If these releases are subsequently captured or destroyed, no exposure occurs and, therefore, no toxic response is possible.

For some permitted releases, permit requirements are written to control chemicals of toxicological importance to the extent possible such that any exposure would be at a level of insignificance to the general public. Certain releases not covered by permits can be monitored by the Agency's statewide air monitoring network.

Air Toxics Program - The Agency is delegated to implement and enforce the federal standards under Section 112 of the CAAA which limit the air releases of Hazardous Air Pollutants (HAPs). Expanded air toxics regulation has been authorized by legislation which added Section 9.5 to the Illinois Environmental Protection Act for the purpose of identifying and limiting releases of toxic air contaminants. Pursuant to Section 9.5, the Agency has evaluated a number of toxic air contaminants. As a result of this evaluation, a revised list of 343 chemicals and compounds has been adopted by the Illinois Pollution Control Board (IPCB) as the Illinois Toxic Air Contaminants List. The list consists of Illinois Toxic Air Contaminants, Hazardous Air Pollutants (HAPs) and Great Lakes and Great Waters pollutants.

Compliance/Enforcement - More than 3,000 facility inspections are conducted each year to verify compliance with regulations and permit conditions. Violations are referred to the Office of the Attorney General for prosecution.

Pollutant Monitoring - Information on waste stream characteristics, groundwater quality, hydrological and geological parameters and soil contamination are collected by the Illinois EPA and in many instances are also supplied to the Illinois EPA by regulated facilities.

Permitting - Permits are required for persons who treat, store or dispose of certain wastes. Applicants have to demonstrate that landfills are properly designed and constructed so as to prevent or minimize any adverse impacts to human health or the environment. In addition, any special wastes, industrial process, pollution control residual or hazardous wastes, have to be properly identified and analyzed before they can be permitted to be landfilled. In many cases, hazardous wastes have to be recycled, incinerated, treated to certain standards or rendered non-hazardous prior to landfilling. Permits for land disposal facilities require the applicant to monitor groundwater and submit reports to the Agency. The groundwater monitoring programs thus identify whether there have been releases from regulated facilities, and the need for remedial action. Permits have been issued to approximately 190 public and private waste treatment, storage and disposal facilities.

Compliance/Enforcement - To ensure that treatment, storage and disposal facilities continue to meet interim or final operating, monitoring and reporting requirements, on-site investigations, sampling visits and records review are done to verify compliance with regulations and permit conditions. Through non-compliance letters, meeting with the facilities and appropriate referral of enforcement actions compliance is tracked and maintained.

Resource Conservation and Recovery Act (RCRA) - Subtitle C of RCRA provides the authority for the development and implementation of a comprehensive hazardous waste management program. The intent of the Act is to control hazardous wastes; to eliminate environmentally unsound disposal practices; to increase the opportunity for resource conservation and recovery; and to provide for the environmentally acceptable disposal of hazardous wastes.

The Hazardous and Solid Waste Amendments to RCRA in 1984 include, among other changes, the authority to make a facility take corrective action for any release.

Subtitle D of RCRA establishes a voluntary program through which states receive federal technical support to develop and implement solid waste management plans. These plans are intended to promote waste reduction and recycling of solid wastes, and require the closing or upgrading of all environmentally unsound dumps. Additionally, minimum technical standards are in place for all solid waste landfills.

Approximately 200 facilities are subject to regulation under the provisions of RCRA.

Pollutant Monitoring - A statewide network of 207 stream monitoring locations is routinely used to assess physical, chemical, biological and bacteriological properties of all surface water and also provides information on ambient conditions and water quality trends. This network is augmented by periodic intensive surveys of the 15 major river basins in the state as well as ongoing programs to measure pollutant levels in sediment and fish flesh.

Permitting - Specific pollutant concentration and mass limitations and monitoring/reporting requirements are incorporated into permits for discharge to surface waters for the approximately 2500 municipal, industrial and commercial dischargers in the state. Chemical releases to surface waters may be permitted if it can be shown that the release will conform to state and federal requirements for technology-based treatment and will not cause or contribute to violations of water quality standards established by the IPCB to protect designated uses of these waters. Thus, it may be required that the chemical be treated, removed, broken down or otherwise controlled to a

Federal PCB Compliance - The use of certain toxic substances such as Polychlorinated Biphenyls are regulated by the federal government under the authority of the Toxic Substances Control Act. Pursuant to a cooperative agreement, OCS staff conduct compliance inspections of such substances for the U.S. EPA who initiate any subsequent enforcement actions. This is one of the few Agency programs that addresses the use aspect of chemicals in contrast to addressing them as a waste, release or residue.

Compliance/Enforcement - Spills reported as emergencies are evaluated to determine the need for prevention and remediation measures. Cooperation is achieved in most cases, but formal compliance actions or even referral for prosecution are sometimes necessary to obtain the desired relief.

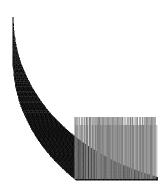
Form R information is used by the Illinois EPA's Bureau of Land to identify toxic chemicals present at hazardous waste sites for a number of programmatic reasons.

Form R data is being used to prioritize facilities for initiatives contained in the Illinois Toxic Pollution Prevention Act. Beginning with reporting year 1991, Form R data is being utilized as a tool for analyzing pollution prevention efforts.

Beginning with reporting year 1991, Form R information is being utilized to verify that appropriate emergency notification has been given by facilities which have experienced non-routine releases of toxic chemicals.

Various individuals and citizen groups have requested Form R data for a variety of purposes, including generation of a report to a citizen groups constituency. Many such requests are made to support site investigations related to property transfer.

The Illinois Department of Public Health may use Form R data as input to the health assessments mandated by this Act for Superfund and Clean Illinois sites.


The Illinois Department of Public Health has requested and received Form R data EGI0 nys input sto theis Tj -31.44 -12 TD

For calendar year 1996, 1,128 facilities submitted 3,602 toxic chemical release reports totalling 133.9 million pounds.

Table 1 lists the facilities reporting the top 20 total release and transfer amounts, not including offsite transfers for recycle or energy recovery.

Table 1 Total Releases and Transfers (Million Pounds) Top 20 Facilities

]	Releases	8		Transfer	s To	otal	
			τ	Jnder-		Oth	er Rel	eases	
	Fugit	ive Stack		ground	On-Site	. (Off-	&	
Facility Name	City A	Air Air	Water	Injection	on Land	I POTW	Site	Transfe	ers
	G / 1'	0.1	0.1	0.0	0.0	14.2	0.0	0.0	147
Northwestern Steel & Wire Co	8	0.1	0.1	0.0	0.0	14.3	0.0	0.2	14.7
Keystone Steel & Wire Co.	Peoria	0.7	0.6	0.0	0.0	0.4	0.0	5.2	6.9
Granite City Steel	Granite City	0.2	0.1	0.0	0.0	5.7	0.0	0.0	6.0
Devro-Teepak	Danville	0.1	3.9	0.0	0.0	0.0	0.1	0.0	4.1
IBP, Inc Joslin, IL	Joslin	0.0	0.0	4.0	0.0	0.0	0.0	0.0	4.0
IMC Nitrogen Company	East Dubuque		3.9	0.1	0.0	0.0	0.0	0.0	4.0
ADM Bioproducts	Decatur	0.0	3.6	0.0	0.0	0.0	0.2	0.0	3.8
Koppers Industries, Inc.	Cicero	0.0	0.1	0.0	0.0	0.0	0.1	2.4	2.6
Flexsys America, L.P	Sauget	0.2	0.1	0.0	0.0	0.0	1.6	0.7	2.6
Krummrich									
Cabot Corporation, Cab-O- Sil Division	Tuscola	0.0	2.1	0.0	0.0	0.0	0.0	0.0	2.1
Archer Daniels Midland Co.	Decatur	0.1	1.8	0.0	0.0	0.0	0.0	0.0	1.9
Viskase Corporation	Bedford Park	0.0	1.5	0.0	0.0	0.0	0.4	0.0	1.9
Austeel Lemont Co. Inc.	Lemont	0.1	0.0	0.0	0.0	1.4	0.0	0.4	1.9
Borden Chemical, Inc.	Forest Park	0.0	0.0	0.0	0.0	0.0	1.8	0.0	1.8
Corn Products & Best Foods - Argo Plant	Bedford Park	0.3	0.6	0.0	0.0	0.0	0.7	0.0	1.6
Millennium Petrochemical- Morris Plant	Morris	0.8	0.8	0.0	0.0	0.0	0.0	0.0	1.6
Monsanto - Krummrich, IL	Sauget	0.3	0.6	0.0	0.0	0.0	0.1	0.6	1.6
Big River Zinc Corp.	Sauget	0.0	0.2	0.0	0.0	0.0	0.0	1.3	1.5
American Steel Foundries	Granite City	0.1	0.1	0.0	0.0	1.0	0.0	0.2	1.4
Lauhoff Grain Co.	Danville	0.4	0.9	0.0	0.0	0.0	0.0	0.0	1.3
Totals for Top 20 Facilities:		3.4	21.0	4.1	0.0	22.8	5.0	11.0	67.3
Totals for All Reporting Facilit	ties:	16.6	51.7	5.1	0.0	23.9	11.1	25.6	133.9

Releases and transfers of 193 different toxic chemicals and categories during 1996 were reported by Illinois facilities. Table 2 lists release and transfer information for the 20 chemicals with the highest reported total amounts.

Table 2 Total Releases and Transfers (Million Pounds) Top 20 Chemicals

						Of	fsite		
			Re	leases		Tra	ansfers		
				Unde	r-		F		
CAS Number		Fugitive S		U	ound			&	
or Category	Chemical Name	Air	Air	Water Ir	jection	Land	POTW (Other Tra	unsfers
000010982	Zinc Compounds	0.9	0	.9 0.0	0.0) 14.	6 0.1	1 7.7	24.2
007664417	Ammonia	0.9		.9 0.0 .0 0.1	0.0				24.2 10.9
000110543*	n-Hexane	2.0		.0 0.1 .3 0.0		•••			10.3
000010450*	Manganese Compounds	2.0 0.1	0						10.3 6.9
000010430	Nitrate Compounds	0.1		.0 4.9					5.9
000075150*	Carbon Disulfide	0.0		.0 4.9					5.7
000108883*	Toluene	2.5		.3 0.0 .3 0.0		•••			5.4
000067561	Methanol	0.8		.0 0.0					4.2
007647010	Hydrochloric Acid	0.0		.0 0.0 .5 0.0					4.1
001330207*	Xylene (Mixed Isomers)	1.3		.3 0.0 .2 0.0					3.9
000079016*	Trichloroethylene	1.0		.0 0.0					3.2
000078933*	Methyl Ethyl Ketone	1.0		.0 0.0 .3 0.0		•••			2.9
000075092*	Dichloromethane	0.9		.5 0.0 .6 0.0					2.9
000085449	Phthalic Anhydride	0.0		.0 0.0					2.0
000010230	Glycol Ethers	0.7		.2 0.0 .6 0.0					2.6
000010090*	Chromium Compounds	0.0		.0 0.0					2.6
000100425*	Styrene	0.3		.o 0.0 .7 0.0					2.4
000108952	Phenol	0.1		.5 0.0					2.2
007782505	Chlorine	0.0		.0 0.0					2.0
007664939	Sulfuric Acid	0.1		.4 0.0					1.8
			0		510	0.			
Totals for Top	20 Chemicals, Compounds:	12.6	42	.9 5.0	0.0	21.	1 8.0) 17.1	106.7
	Reported Chemicals &								
Compounds		51.7	5	.1 0.0	23.9	11.	1 25.6	5 133.9	

* Known to have "Significant" human health effects (i.e. are known or probable human carcinogens, teratogens, reproductive toxicants or fetal toxicants).

Facilities in 226 individual four-digit SIC codes have reported toxic chemical releases and transfers for calendar year 1996. Table 3 summarizes the information for the 20 SIC codes reporting the highest release and transfer totals.

Table 3 Total Releases and Transfers (Million Pounds) Top 20 SIC Codes

			D 1			Offsite		. 1	
			Releas			Transf		Total	
CIC.	E	·····	.1	Under-	ı		Rel	eases	
SIC	-	itive Sta		ground				& 	-f
Code	Description	Air A	ar wa	ter Inject	tion La	id POI	w Oth	er Tran	sters
3312	Steel Works, Blast Furnaces (Including Coke Ovens) and Rolling Mills	g 1.3	1.1	0.0	0.0	21.8	0.4	5.8	30.4
2075	Soybean Oil Mills	1.3	7.0	0.0	0.0	0.0	0.0	0.0	8.3
2865	Cyclic Organic Crudes & Intermediates and Organic Dyes and Pigments	s, 0.6	1.2	0.1	0.0	0.0	2.4	3.7	8.0
2821	Plastic Materials, Synthetic Resins and Nonvulcanizable Elastomers	0.8	2.8	0.2	0.0	0.0	2.1	1.3	7.2
3089	Plastic Products, Not Elsewhere Classified	0.2	5.7	0.0	0.0	0.0	0.4	0.1	6.4
2011	Meat Packing Plants	0.2	0.0	4.0	0.0	0.0	0.1	0.0	4.3
2869	Industrial Organic Chemicals, Not Elsewhere Classified	1.2	1.9	0.0	0.0	0.0	0.3	0.8	4.2
2873	Nitrogenous Fertilizers	0.0	3.9	0.1	0.0	0.0	0.0	0.0	4.0
2048	Prepared Feed & Feed Ingredients for Animals & Fowls, Except Dogs & Ca	0.0 ats	3.6	0.0	0.0	0.0	0.2	0.0	3.8
2819	Industrial Inorganic Chemicals, Not Elsewhere Classified	0.1	2.2	0.0	0.0	0.0	0.2	1.2	3.7
3341	Secondary Smelting & Refining of Nonferrous Metals	0.1	0.5	0.0	0.0	0.6	0.0	1.6	2.8
3471	Electroplating, Plating, Polishing, Anodizing and Coloring	0.2	0.4	0.0	0.0	0.0	0.6	1.6	2.8
3086	Plastic Foam Products	0.9	1.9	0.0	0.0	0.0	0.0	0.0	2.8
2046	Wet Corn Milling	0.4	1.0	0.0	0.0	0.0	0.8	0.0	2.2
2911	Petroleum Refining	0.8	0.6	0.5	0.0	0.0	0.1	0.1	2.1
	Surface Active Agents, Finishing Agents, Sulfonated Oils, & Assistant	0.3 s	0.9	0.0	0.0	0.0	0.7	0.1	2.0
2752	Commercial Printing, Lithographic	1.3	0.6	0.0	0.0	0.0	0.0	0.0	1.9
	Motor Vehicles & Passenger Car Bodie	es 0.4	0.8	0.0	0.0	0.0	0.3	0.4	1.9
3499	Fabricated Metal Products, Not Elsewhere Classified	0.4	1.2	0.0	0.0	0.0	0.0	0.2	1.8
3325	Steel Foundries, Not Elsewhere Class.	0.1	0.1	0.0	0.0	1.0	0.0	0.5	1.7
Totals	s for Top 20 SIC Codes:	10.6	37.4	4.9	0.0	23.4	8.6	17.4	102.3
	s for All SIC Codes:	16.6	51.7	5.1	0.0	23.9	11.1	25.6	133.9

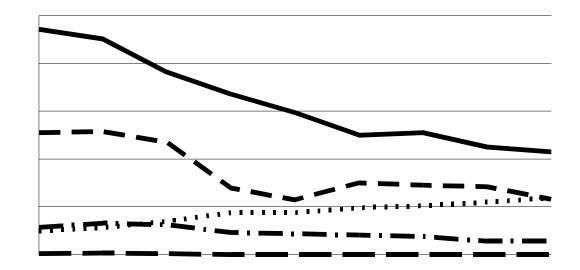

Air emissions for calendar year 1996 in the 20 ZIP codes with the highest reported totals are summarized in Table 4.

Table 4

Total Air Emissions (Million Pounds) Top 20 ZIP Codes

ZIP		Total Air Emissions						
Code	County	Fugitive	Stack	Total				
(252)			5.0	7.0				
62526	Macon	0.6	7.2	7.8				
61832	Vermilion	0.7	4.9	5.6				
61025	JoDaviess	0.0	3.9	3.9				
61953	Ogle	0.1	2.2	2.3				
60450	Grundy	0.9	1.1	2.0				
60638	Cook	0.0	1.5	1.5				
62206	St. Clair	0.5	0.9	1.4				
61641	Peoria	0.7	0.6	1.3				
60501	Cook	0.3	1.0	1.3				
61054	Ogle	1.0	0.3	1.3				
61350	LaSalle	0.1	1.2	1.3				
62881	Marion	1.0	0.2	1.2				
61701	McL0.2							

Reporting of toxic chemical release information as required by Section 313 of EPCRA began with reports for calendar year 1987. In that time period, there have been many additions to and deletions from

MILL

Table 5

Total Release and Transfer Amounts Top 20 Facilities

	Total Releases and Transfers (Million Pounds):							
	Base	Last	Five Ye	ars		Total		
Facility	City 19	88 1992	1993	1994	1995	1996	88-96	
Northwestern Steel & Wire Co.	Sterling	7.0	13.1	14.7	15.1	20.3	14.6	113.1
Keystone Steel & Wire Co.	Peoria	4.5	1.5	5.7	6.3	6.6	6.9	46.9
Granite City Steel	Granite City	4.9	4.4	5.1	5.0	5.4	6.0	46.1
Cabot Corporation, Cab-O-Sil	Tuscola	3.9	4.3	2.8	3.5	2.4	2.0	31.5
Division								
Devro-Teepak	Danville	2.1	3.4	3.5	3.8	3.8	3.9	30.2
Monsanto-Krummrich, IL	Sauget	6.3	2.4	2.0	1.9	2.1	0.8	26.3
Chicago Specialties, Inc.	Chicago	3.1	1.8	2.0	2.5	1.1	0.5	19.5
Millennium Petrochemical -	Morris	4.3	2.0	1.8	1.3	1.0	1.6	19.3
Morris Plant								
3M Tape Manufacturing Division	Bedford Park	1.7	1.8	1.5	1.6	0.6	0.5	15.3
Monsanto-University Park, IL	University Park	2.2	2.0	1.6	0.8	0.4	0.2	15.1
(Nutrasweet)								
Carus Chemical Company	LaSalle	1.6	1.7	1.7	1.7	1.4	1.1	14.0
Chicago Assembly Plant	Chicago	2.0	1.7	1.4	1.3	1.3	0.7	13.7
Viskase Corp.	Bedford Park	1.2	1.3	1.3	1.7	1.7	1.7	12.8
R.R. Donnelley & Sons Company	Mattoon	2.4	1.1	0.7	0.8	0.6	0.3	11.9
GE Company	Ottawa	2.4	1.0	1.0	1.0	1.1	1.0	11.6
Big River Zinc Corporation	Sauget	2.0	0.8	1.4	1.2	1.2	1.4	11.5
Shell Wood River Refining Co.	Roxana	1.7	1.2	1.0	1.2	0.5	0.6	11.3
Harcros Pigments Inc.	East St. Louis	2.2	1.0	0.0	0.0	0.0	0.0	11.1
Quebecor Printing Mt. Morris, Inc.	Mount Morris	1.7	1.2	1.2	1.0	0.9	1.3	10.9
Borden Chemical, Inc.	Forest Park	0.8	0.9	1.6	1.4	1.5	1.8	10.3
Totals for Top 20 Facilities:		58.0	48.6	52.0	53.1	53.9	46.9	482.4
Totals for All Reporting Facilities:		166.5	110.8	110.0	109.6	102.5	96.1	1,138.6

Considering only toxic chemicals known to have significant human health effects, facilities reported total releases and transfers of 414.3 million pounds during those same years. The top 20 facilities accounted for 56% of that total, as shown in Table 6.

Table 6

Total Release and Transfer Amounts Chemicals With Significant Human Health Effects Top 20 Facilities

	Total Releases and Transfers (Million Pounds):								
	Ba	ase Yr.		Last Five Years			Total		
Facility	City	1988	1992	1993	1994	1995	1996	88-96	
Northwestern Steel & Wire Co.	Sterling		2.7	6.6	6.4	6.2	6.7	6.2	49.4
Devro-Teepak	Danville		2.1	3.4	3.5	3.8	3.8	3.9	30.2
Viskase Corp.	Bedford Park		1.2	1.3	1.3	1.7	1.7	1.7	12.8
Carus Chemical Company	LaSalle		1.3	1.4	1.4	1.4	1.1	0.9	11.4
GE Company	Ottawa		2.3	1.0	1.0	1.0	1.0	1.0	11.3
R.R. Donnelley & Sons Company	Mattoon		2.3	1.1	0.6	0.7	0.6	0.3	11.2
3M Tape Manufacturing Division	Bedford Park		1.6	1.2	1.1	1.1	0.4	0.3	11.0
Quebecor Printing Mt. Morris, Inc.	Mount Morris		1.7	1.2	1.2	1.0	0.8	1.2	10.7
Monsanto - Krummrich, IL	Sauget		2.6	1.1	0.7	0.9	0.4	0.1	10.7
Granite City Steel	Granite City		1.2	0.9	0.9	0.8	0.7	0.8	9.6
Shell Wood River Refining Co.	Roxana		1.2	0.9	0.7	0.8	0.3	0.4	8.0
Dana Corporation - Victor	Robinson		1.4	0.5	0.6	0.5	1.0	0.1	7.9
Products Division									
Chicago Specialties, Inc.	Chicago		1.5	1.0	1.0	0.7	0.0	0.0	7.8
Abbott Laboratories North	North Chicago		0.6	1.4	0.9	1.0	0.7	0.4	7.1
Chicago Plant									
Salem Gravure	Salem		0.7	0.5	0.5	1.6	1.2	1.1	7.0
Keystone Steel & Wire Co.	Peoria		0.4	0.2	1.0	1.1	1.2	1.2	7.0
Chicago Assembly Plant	Chicago		0.8	0.8	0.5	0.4	0.3	0.3	5.6
Zenith Electronics Corp	Melrose Park		0.8	0.9	0.9	1.0	0.5	0.2	5.3
Rauland Division									
GFC-Bridgeview	Bridgeview		0.2	0.0	0.7	0.9	0.8	0.7	4.8
Allied Tube & Conduit Corp.	Harvey		0.4	0.5	0.5	0.6	0.5	0.6	4.5
Totals for Top 20 Facilities:			27.0	25.9	25.4	27.2	23.7	21.4	233.3
Totals for All Reporting Facilities:			56.7	42.1	42.0	43.9	38.8	35.8	414.3

Release and transfer amounts reported by a number of facilities increased from 1988 through 1996. Table 9 shows the top twenty facilities ranked according to total release and transfer increases in pounds per year for the eight-year period.

Table 9

Total Release and Transfer Increases Top 20 Facilities

	Total Releases and Transfers (Million Pounds):								
					Total				
		Base Yr.		Last Five Years			Increase		
Facility	City	1988	1992	1993	1994	1995	1996	88-96	
Northwestern Steel & Wire Co.	Sterling		7.0	13.1	14.7	15.1	20.3	14.6	7.6
Keystone Steel & Wire Co.	Peoria		4.5	1.5	5.7	6.3	6.6	6.9	2.4
Devro-Teepak	Danville		2.1	3.4	3.5	3.8	3.8	3.9	1.9
Koppers Industries, Inc.	Cicero		1.3	0.2	0.1	0.1	0.2	2.6	1.3
Granite City Steel	Granite	City	4.9	4.4	5.1	5.0	5.4	6.0	1.1
Borden Chemical, Inc.	Forest P	ark	0.8	0.9	1.6	1.4	1.5	1.8	1.0
GFC-Bridgeview	Bridgevi	ew	0.2	0.0	0.7	0.9	0.8	0.7	0.5
Viskase Corp.	Bedford	Park	1.2	1.3	1.3	1.7	1.7	1.7	0.5
Senior Flexonics, Inc.	Bartlett		0.1	0.4	0.4	0.3	0.3	0.6	0.5
No-Sag Foam Products Corp	West Ch	icago	0.1	0.3	0.3	0.5	0.5	0.5	0.4
Foam Operations		•							
The BF Goodrich Company	Henry		0.1	0.1	0.0	0.1	0.3	0.4	0.3
Salem Gravure	Salem		0.8	0.5	0.5	1.6	1.2	1.1	0.3
JLM Chemicals Inc.	Alsip		0.2	0.6	0.6	0.6	0.5	0.5	0.3
Caterpillar Inc. Performance	Mossvill	e	0.3	0.0	0.2	0.3	0.2	0.5	0.3
Engine Products Division									
Techalloy Company, Inc.	Union		0.0	0.0	0.2	0.2	0.5	0.3	0.2
Dynachem, Inc.	Georget	own	0.0	0.2	0.3	0.4	0.3	0.3	0.2
Caterpillar Inc Mapleton Plant	Mapleto		0.0	0.1	0.2	0.3	0.3	0.3	0.2
IMC Nitrogen Company	East Dul		0.2	0.0	0.3	0.3	0.4	0.5	0.2
Witco Corporation	Blue Isla	-	0.0	0.0	0.0	0.0	0.4	0.2	0.2
Werner Co., Chicago Division	Franklin	Park	0.0	0.1	0.1	0.1	0.2	0.2	0.2
· · · · · · · · · · · · · · · · · · ·									
Totals for Top 20 Facilities:			23.8	27.1	35.8	39.0	45.4	43.6	19.6
Totals for 206 Facilities With									
Increases:			28.5	35.4	43.7	46.9	53.2	52.1	23.6

Table 10 shows the top twenty facilities reporting increases in releases and transfers of toxic chemicals with significant human health effects.

Table 10

Total Release and Transfer Increases Chemicals With Significant Human Health Effects Reporting of information about source reduction (pollution prevention) efforts has been required beginning with reporting year 1991. 809 facilities have indicated undertaking such activities for one or more years from 1992 through 1996. The top twenty facilities in this category are shown in Table 11.

The fact that a facility claimed source reduction activities for a chemical does not necessarily mean that the reduction in releases and transfers of the chemical are attributable to those activities.

Table 11

Source Reduction-Based Release and Transfer Decreases Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96)

			Total Releases and Transfers (Million Pounds):					
						To	otal	
				Reduction				
Facility	City	1992	1993	1994	1995	1996	92-96	
2M Tono Monufacturing Division	Bedford Park		1.8	0.7	0.3	0.2	0.1	1.7
3M Tape Manufacturing Division Viskase Corp.	Bedford Park		1.8 1.3	0.7	0.5	0.2	0.1	1.7
Chicago Specialties, Inc.	Chicago		1.5	2.0	2.5	1.1	0.0	1.3
• •	Mt. Morris		1.8	2.0 1.2	2.3 1.0	0.0	0.3	1.5
Quebecor Printing Mt. Morris, Inc.								
Abbott Laboratories North Chicago Plant	North Chicago		1.4	0.7	0.7	0.7	0.3	1.1
GE Company	Ottawa		1.0	1.0	1.0	1.1	0.0	1.0
Harcros Pigments Inc.	East St. Louis		1.0	0.0	0.0	0.0	0.0	1.0
R.R. Donnelley & Sons Company	Mattoon		1.1	0.7	0.7	0.6	0.3	0.8
Belvidere Assembly Plant	Belvidere		0.7	0.0	0.2	0.2	0.0	0.7
Nascote Industries Inc.	Nashville		0.9	0.6	0.7	0.6	0.2	0.6
Keystone Steel & Wire Co.	Peoria		0.6	0.2	0.0	0.0	0.0	0.6
Shell Wood River Refining Co.	Roxana		1.0	0.9	0.9	0.4	0.4	0.6
Reynolds Metals Company	McCook		0.6	0.1	0.0	0.0	0.0	0.6
McIntyre Group, Ltd.	University Park	2	0.5	0.3	0.0	0.0	0.0	0.5
Allied Tube & Conduit Corp.	Harvey		0.4	0.4	0.0	0.0	0.0	0.4
Senior Flexonics, Inc.	Bartlett		0.4	0.1	0.0	0.0	0.0	0.4
Morton International	Lansing		0.3	0.3	0.1	0.1	0.0	0.3
Olin Corporation	East Alton		0.3	0.0	0.0	0.0	0.0	0.3
R. Lavin & Sons, Inc.	North Chicago		0.3	0.0	0.0	0.0	0.0	0.3
Wheatland Tube Company	Chicago		0.3	0.1	0.1	0.1	0.1	0.3
Totals for Top 20 Facilities: Totals for 330 Facilities Reporting			16.9	9.3	8.2	5.1	1.9	15.0
Decreases:			31.7	16.2	13.0	7.8	3.6	28.1

Table 12 shows the twenty facilities reporting the greatest reductions based on source reduction efforts for chemicals with significant human health effects.

Table 12

Source Reduction-Based Release and Transfer Decreases Top 20 Facilities (Chemicals for Which Source Reduction Activities Were Claimed Any Year, 92-96) Chemicals With Significant Human Health Effects

		Total Releases and Transfers (Million Pounds):							
		Total							
						Redu	uction		
Facility	City	1992	1993	1994	1995	1996	92-96		

Viskase Corp.

Bedford Park

A number of the facilities which have submitted toxic chemical release reports every year since 1988 have demonstrated performance which sets them apart from other facilities. Several criteria have been considered to identify these facilities:

! Toxic chemical release and transfer reduction greater than 1 million pounds, 1988 through 1996 (most

Total Air Emissions Chemicals With Significant Human Health Effects Top 20 Chemicals

Collit	sined Stac	k and Fi	igitive E	mission	s (Million	Pounds):	
Base Yr.		Last F	ive Yea	S	Tota	al Emissions	
1988	1992	1993	1994	1995	1996	88-96	
18.3	9.3	7.1	7.5	5 6.4	4 4.8	94.0	
Isomers) 6.9	5.6	4.8	5.0) 3.4	4 3.5	49.6	
le 3.3	4.6	4.7	5.3	3 5.1	3 5.4	41.8	
etone 4.8	4.0	4.0	3.5	5 2.7	7 2.2	36.5	
ne 4.4	3.8	3.7	3.9) 3.4	4 3.0	34.3	
ne 4.1	2.3	2.8	3.0) 2.'	7 2.5	27.7	
1.9	1.6	1.9	2.2	2 2.	1 2.0	16.0	
vlene 2.0	0.7	0.6	0.5	5 0.5	5 1.0	8.5	
1.6	0.6	0.6	0.6	5 0.4	4 0.4	8.4	
1.1	0.4	0.4	0.4	0.4	4 0.4	4.9	
0.5	0.3	0.3	0.3	3 0.2	2 0.2	2.6	
0.1	0.1	0.1	0.1	0.	1 0.1	1.1	
0.1	0.1	0.1	0.1	0.0	0.0	0.8	
ds 0.1	0.1	0.1	0.1	0.	1 0.2	0.8	
0.3	0.1	0.1	0.0) 0.0	0.0	0.8	
npounds 0.1	0.1	0.1	0.1	0.	1 0.2	0.8	
0.2	0.0	0.0	0.0	0.	1 0.1	0.7	
ane 0.1	0.2	0.1	0.0) 0.0	0.0	0.6	
0.1	0.0	0.0	0.0) 0.0	0.0	0.5	
0.1	0.0	0.1	0.1	0.0	0.1	0.4	
50.1	22.0	21.6	22.7) 261	220.9	
	Base Yr. 1988 18.3 Isomers) 6.9 de 3.3 detone 4.8 ne 4.4 ne 4.1 1.9 vlene 2.0 1.6 1.1 0.5 0.1 0.1 ds 0.1 e 0.3 mpounds 0.1 0.2 nane 0.1 0.1	Base Yr. 1988 1992 18.3 9.3 Isomers) 6.9 5.6 de 3.3 4.6 de 3.3 4.6 de 3.3 4.6 de 4.8 4.0 ne 4.4 3.8 ne 4.1 2.3 /lene 2.0 0.7 1.6 0.6 1.1 0.4 0.5 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.1 0.2 0.1 0.2 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0	Base Yr. Last F 1988 1992 1993 18.3 9.3 7.1 Isomers) 6.9 5.6 4.8 de 3.3 4.6 4.7 letone 4.8 4.0 4.0 ne 4.1 2.3 2.8 1.9 1.6 1.9 vlene 2.0 0.7 0.6 1.6 0.6 0.6 1.1 0.4 0.4 0.5 0.3 0.3 0.1 0.1 0.1 0.3 0.1 0.1 mpounds 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 <td>Base Yr. Last Five Year 1988 1992 1993 1994 18.3 9.3 7.1 7.5 Isomers) 6.9 5.6 4.8 5.0 de 3.3 4.6 4.7 5.3 ne 4.1 2.3 2.8 3.0 ne 4.1 2.3 2.8 3.0 vlene 2.0 0.7 0.6 0.5 vlene 2.0 0.7 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 mpounds 0.1 0.1 0.1 0.1</td> <td>Base Yr. Last Five Years 1988 1992 1993 1994 1995 18.3 9.3 7.1 7.5 6.4 Isomers) 6.9 5.6 4.8 5.0 3.4 de 3.3 4.6 4.7 5.3 5.7 de 3.3 4.6 4.7 5.3 5.7 de tone 4.8 4.0 4.0 3.5 2.7 ne 4.1 2.3 2.8 3.0 2.7 ne 4.1 2.3 2.8 3.0 2.7 ylene 2.0 0.7 0.6 0.5 0.3 1.6 0.6 0.6 0.6 0.4 0.5 0.3 0.3 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 <t< td=""><td>Base Yr. Last Five Years Total 1988 1992 1993 1994 1995 1996 18.3 9.3 7.1 7.5 6.4 4.8 Isomers) 6.9 5.6 4.8 5.0 3.4 3.5 de 3.3 4.6 4.7 5.3 5.3 5.4 actone 4.8 4.0 4.0 3.5 2.7 2.2 ine 4.4 3.8 3.7 3.9 3.4 3.0 ne 4.1 2.3 2.8 3.0 2.7 2.5 1.9 1.6 1.9 2.2 2.1 2.0 vlene 2.0 0.7 0.6 0.5 0.5 1.0 1.6 0.6 0.6 0.6 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <t< td=""><td>Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.3 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 1.1 1.1 0.4 0.4 0.4 0.4 0.4 0.4 <td< td=""></td<></td></t<></td></t<></td>	Base Yr. Last Five Year 1988 1992 1993 1994 18.3 9.3 7.1 7.5 Isomers) 6.9 5.6 4.8 5.0 de 3.3 4.6 4.7 5.3 ne 4.1 2.3 2.8 3.0 ne 4.1 2.3 2.8 3.0 vlene 2.0 0.7 0.6 0.5 vlene 2.0 0.7 0.6 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.0 mpounds 0.1 0.1 0.1 0.1	Base Yr. Last Five Years 1988 1992 1993 1994 1995 18.3 9.3 7.1 7.5 6.4 Isomers) 6.9 5.6 4.8 5.0 3.4 de 3.3 4.6 4.7 5.3 5.7 de 3.3 4.6 4.7 5.3 5.7 de tone 4.8 4.0 4.0 3.5 2.7 ne 4.1 2.3 2.8 3.0 2.7 ne 4.1 2.3 2.8 3.0 2.7 ylene 2.0 0.7 0.6 0.5 0.3 1.6 0.6 0.6 0.6 0.4 0.5 0.3 0.3 0.3 0.7 0.1 0.1 0.1 0.1 0.1 0.6 0.1 0.4 0.4 0.4 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 <t< td=""><td>Base Yr. Last Five Years Total 1988 1992 1993 1994 1995 1996 18.3 9.3 7.1 7.5 6.4 4.8 Isomers) 6.9 5.6 4.8 5.0 3.4 3.5 de 3.3 4.6 4.7 5.3 5.3 5.4 actone 4.8 4.0 4.0 3.5 2.7 2.2 ine 4.4 3.8 3.7 3.9 3.4 3.0 ne 4.1 2.3 2.8 3.0 2.7 2.5 1.9 1.6 1.9 2.2 2.1 2.0 vlene 2.0 0.7 0.6 0.5 0.5 1.0 1.6 0.6 0.6 0.6 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <t< td=""><td>Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.3 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 1.1 1.1 0.4 0.4 0.4 0.4 0.4 0.4 <td< td=""></td<></td></t<></td></t<>	Base Yr. Last Five Years Total 1988 1992 1993 1994 1995 1996 18.3 9.3 7.1 7.5 6.4 4.8 Isomers) 6.9 5.6 4.8 5.0 3.4 3.5 de 3.3 4.6 4.7 5.3 5.3 5.4 actone 4.8 4.0 4.0 3.5 2.7 2.2 ine 4.4 3.8 3.7 3.9 3.4 3.0 ne 4.1 2.3 2.8 3.0 2.7 2.5 1.9 1.6 1.9 2.2 2.1 2.0 vlene 2.0 0.7 0.6 0.5 0.5 1.0 1.6 0.6 0.6 0.6 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 <t< td=""><td>Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.3 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 1.1 1.1 0.4 0.4 0.4 0.4 0.4 0.4 <td< td=""></td<></td></t<>	Base Yr. Last Five Years Total Emissions 1988 1992 1993 1994 1995 1996 88-96 1somers) 6.9 5.6 4.8 5.0 3.4 3.5 49.6 de 3.3 4.6 4.7 5.3 5.3 5.4 41.8 detone 4.8 4.0 4.0 3.5 2.7 2.2 36.5 ne 4.1 2.3 2.8 3.0 2.7 2.5 27.7 1.9 1.6 1.9 2.2 2.1 2.0 16.0 glene 2.0 0.7 0.6 0.5 0.5 1.0 8.5 1.6 0.6 0.6 0.4 0.4 8.4 4.9 0.5 0.3 0.3 0.3 0.2 0.2 2.6 0.1 0.1 0.1 0.1 0.1 1.1 1.1 0.4 0.4 0.4 0.4 0.4 0.4 <td< td=""></td<>

Total Water Releases Top 20 Chemicals

	Water Releases (Thousand Pounds):									
CAS Number	·]	Base Yr.		Last Fiv	ve Years		Total Releases			
or Category	Chemical Name	1988	1992	1993	1994 19	995 1	996	88-96		
000107211	Ethylene Glycol	173.2	6.6	28.3	3.7	6.0	1.6	503.5		
000111422	Diethanolamine	60.1	1.0	3.9	0.9	15.8	0.6	337.2		
000067561	Methanol	16.5	10.8	18.6	10.1	26.9	32.4	265.5		
007664382	Phosphoric Acid	43.6	1.0	0.5	1.0	1.0	1.0	251.6		
000010982	Zinc Compounds	16.1	25.3	19.6	22.5	16.7	17.1	169.1		
007782505	Chlorine	41.7	24.9	5.3	5.4	2.3	1.6	155.1		
007439965	Manganese	26.4	13.7	12.4	11.9	10.9	10.1	134.3		
007440508	Copper	10.8	7.3	7.9	8.6	7.4	6.4	77.7		
007440666	Zinc (Fume or Dust)	16.8	4.6	5.7	4.6	2.9	0.0	73.1		
000010090	Chromium Compounds	8.0	5.9	6.0	4.1	3.7	2.6	61.6		
007429905	Aluminum (Fume or Dus	t) 2.5	11.0	10.0	9.6	0.0	0.0	59.6		
000010420	Lead Compounds	7.0	3.1	2.7	2.7	4.7	2.9	53.3		
000010450	Manganese Compounds	3.0	4.4	8.7	6.6	6.1	5.5	50.0		
007440393	Barium	0.1	4.6	4.2	3.9	3.5	0.0	41.1		
000010230	Glycol Ethers	1.7	1.7	1.2	2.4	6.1	16.9	40.9		
000010100	Copper Compounds	3.1	1.2	1.2	1.7	1.1	2.1	36.9		
000108952	Phenol	4.4	2.7	2.7	3.0	3.7	2.9	33.9		
007440020	Nickel		6.0	5 2.7	3.7					

Total Water Releases Chemicals With Significant Human Health Effects Top 20 Chemicals

	Water Releases (Thousand Pounds):									
CAS Number		Base Yr.		Last F	Total Releases					
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96		
007439965	Manganese	26.	4 13.7	12.4	11.9	9 10.9) 10.1	134.3		
000010090	Chromium Compounds	8.	0 5.9	6.0	4.1	3.7	2.6	61.6		
000010420	Lead Compounds	7.	0 3.1	2.7	2.7	4.7	2.9	53.3		
000010450	Manganese Compounds	3.	0 4.4	8.7	6.6	6.1	5.5	50.0		
007440020	Nickel	2.	7 5.3	4.8	5.1	l 5.2	2 3.7			

Total On-Site Land Releases Top 20 Chemicals

			e Land Re	Land Releases (Million Pounds):						
CAS Number	r]	Base Yr.		Last Fi	ve Years		Tota	l Releases		
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96		
000010982	Zinc Compounds	3.8	6.5	8.0		13.3		68.8		
000010450	Manganese Compounds	0.8	5.4	5.2	4.9	5.6	5.1	38.2		
007440666	Zinc (Fume or Dust)	3.1	3.0	3.8	4.0	0.1	0.0	23.0		
007439965	Manganese	0.5	0.6	0.6	0.7	0.6	0.7	6.0		
000010090	Chromium Compounds	0.1	0.5	0.7	1.1	0.6	1.4	5.2		
000010420	Lead Compounds	0.3	0.4	0.6	0.7	0.8	0.8	4.7		
007429905	Aluminum (Fume or Dust	t) 0.1	0.3	0.2	0.3	0.8	0.9	3.4		
007440473	Chromium	0.2	0.2	0.2	0.1	0.1	0.1	1.5		
000010040	Barium Compounds	0.0	0.2	0.0	0.0	0.0	0.0	1.2		
007439921	Lead	0.2	0.1	0.1	0.1	0.0	0.0	0.7		
000050000	Formaldehyde	0.3	0.0	0.0	0.0	0.0	0.0	0.6		
007664382	Phosphoric Acid	0.0	0.1	0.1	0.0	0.0	0.0	0.5		
000108952	Phenol	0.3	0.0	0.0	0.0	0.0	0.0	0.5		
007697372	Nitric Acid	0.0	0.1	0.0	0.0	0.0	0.0	0.4		
007440508	Copper	0.0	0.0	0.0	0.0	0.0	0.1	0.3		
007440393	Barium	0.0	0.0	0.0	0.0	0.0	0.0	0.3		
001330207	Xylene (Mixed Isomers)	0.0	0.0	0.0	0.0	0.0	0.0	0.2		
000108883	Toluene	0.0	0.0	0.0	0.0	0.0	0.0	0.2		
000095636	1,2,4-Trimethylbenzene	0.0	0.2	0.0	0.0	0.0	0.0	0.2		
000107211	Ethylene Glycol	0.0	0.0	0.0	0.0	0.0	0.0	0.2		
	-									
Totals For To	op 20 Chemicals:	9.7	17.6	19.5	20.6	21.9	23.7	156.1		
Totals for Al	l Chemicals:	10.0	17.6	19.7	20.6	22.0	23.8	157.0		

Total On-Site Land Releases Chemicals With Significant Human Health Effects Top 20 Chemicals

		(Dn-Site La	and Relea	ses (Thous	sand Pound	s):			
CAS Numbe	r]	Base Yr.	_	Last Fi	ve Years		Total Releases			
or Category	Chemical Name	1988	1992	1993	1994	1995 19	996	88-96		
000010450	Manganese Compounds	833.5	5,403.4	5,159.6	4,902.2	5,626.4	5,083.6	38,229.1		
007439965	Manganese	520.5	596.4	595.5	653.8	596.7	727.1	5,984.7		
000010090	Chromium Compounds	66.0	482.8	732.7	1,073.7	643.8	1,390.5	5,198.8		
000010420	Lead Compounds	250.4	441.6	641.5	721.5	791.5	823.6	4,725.7		
007440473	Chromium	187.7	187.6	232.6	76.2	77.3	70.0	1,477.5		
007439921	Lead	177.8	81.0	106.4	119.3	10.5	1.7	733.6		
000050000	Formaldehyde	330.8	22.0	15.7	2.8	1.9	0.2	563.4		
001330207	Xylene (Mixed Isomers)	16.8	1.1	1.5	3.2	2.1	3.0	239.6		
000108883	Toluene	42.8	4.1	4.9	2.3	15.3	0.6	227.9		
007440020	Nickel	42.0	17.8	21.1	16.5	8.6	8.6	153.5		
000079107	Acrylic Acid	0.2	0.1	0.1	0.1	0.0	0.1	94.6		
000010495	Nickel Compounds	13.0	37j 1	25.04	854s.56 0	TD (0.0)	Гј 403 Тс	c (42.8) Tj 45.6 () TE	

Total Off-Site Transfers to POTW Top 20 Chemicals

	Off-Site Transfers to POTW (Million Pounds):								
CAS Number		Base Yr.		Last Fi	ive Yea	rs	Т	otal Transfers	
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96	
000067561	Methanol	3.0	3.2	3.4	2.	0 1.	.7 1.8	26.6	
000108952	Phenol	1.2	1.5	0.9	0.	9 1.	1 1.4	10.9	
000106445	p-Cresol	0.7	0.7	0.9	1.	7 0.	.9 0.4	8.7	
000062533	Aniline	0.7	0.4	0.8	0.	6 0.	1 0.0	4.7	
000010230	Glycol Ethers	0.5	0.6	0.5	0.	4 0	.3 0.2	4.6	
000107211	Ethylene Glycol	0.4	0.3	0.2	0.	2 0.	1 0.1	3.2	
001330207	Xylene (Mixed Isomers)	0.8	0.2	0.2	0.	2 0.	0.0	2.4	
007664382	Phosphoric Acid	0.7	0.2	0.2	0.	1 0.	1 0.1	2.4	
007697372	Nitric Acid	0.3	0.1	0.0	0.	0 0	0.0	2.0	
000108316	Maleic Anhydride	0.6	0.0	0.0	0.	0 0	0.0	1.8	
007664393	Hydrogen Fluoride	0.0	0.2	0.2	0.	3 0.	.4 0.2	1.4	
000111422	Diethanolamine	0.1	0.2	0.2	0.	1 0.	0.0	1.3	
000071432	Benzene	0.5	0.0	0.0	0.	0 0	0.0	1.3	
000075150	Carbon Disulfide	0.0	0.1	0.1	0.	3 0.	.2 0.3	1.3	
000100027	4-Nitrophenol	0.4	0.0	0.0	0.	0 0	0.0	1.1	
000078933	Methyl Ethyl Ketone	0.0	0.1	0.1	0.	1 0.	.2 0.3	0.9	
000010982	Zinc Compounds	0.1	0.1	0.1	0.	1 0.	1 0.1	0.8	
000095487	o-Cresol	0.0	0.0	0.0	0.	1 0.	1 0.0	0.5	
000108101	Methyl Isobutyl Ketone	0.0	0.0	0.0	0.	0 0	0.0	0.5	
000075092	Dichloromethane	0.0	0.4	0.0	0.	0 0	0.0	0.5	
			8.3						
	Totals for Top 20 Chemicals:10.0			7.8			3 4.9	76.9	
Totals for All	Chemicals:	11.5	8.8	8.4	7.	7 5.	9 5.9	83.4	

Total Off-Site Transfers to POTW Chemicals With Significant Human Health Effects Top 20 Chemicals

	Off-Site Transfers to POTW (Thousand Pounds):								
CAS Number	Ba	ase Yr.		Last Fiv	ve Years		Total T	ransfers	
or Category	Chemical Name	1988	1992	1993	1994	1995 1	996	88-96	
000062533	Aniline	688.4	425.3	754.5	600.7	69.3	36.0	4,678.1	
001330207	Xylene (Mixed Isomers)	769.0	155.9	218.8	219.4	11.4	20.2	2,443.4	
000071432	Benzene	494.5	9.7	5.0	8.0	11.1	18.7	1,294.7	
000075150	Carbon Disulfide	37.0	96.0	130.2	256.9	247.4	336.8	1,279.3	
000078933	Methyl Ethyl Ketone	14.2	53.8	51.6	73.2	161.1	341.5	870.5	
000075092	Dichloromethane	9.4	371.4	27.5	9.2	16.1	17.0	492.6	
000108883	Toluene	13.6	80.0	98.5	75.5	36.0	37.1	413.7	
000050000	Formaldehyde	47.6	37.0	30.0	30.5	21.7	24.4	311.8	
000079016	Trichloroethylene	4.0	55.3	28.1	35.9	2.8	69.2	258.1	
000010090	Chromium Compounds	35.3	27.1	26.9	18.2	16.5	14.2	230.6	
000010495	Nickel Compounds	57.2	10.9	15.1	12.6	12.8	17.8	179.8	
000010450	Manganese Compounds	1.0	26.8	9.3	12.6	17.1	21.0	133.8	
000107062	1,2-Dichloroethane	62.7	4.3	9.8	0.0	0.0	0.6	106.9	
000075218	Ethylene Oxide	5.7	6.2	10.4	23.0	21.0	21.0	104.6	
007440020	Nickel	12.0	8.0	8.7	8.8	9.2	12.4	87.9	
007440473	Chromium	28.1	4.0	3.6	3.5	4.0	5.5	69.9	
000010420	Lead Compounds	24.9	4.8	4.7	4.4	4.6	3.0	68.2	
007439965	Manganese	26.1	1.8	2.1	2.6	3.6	3.7	60.0	
000079061	Acrylamide	0.7	22.0	0.9	0.9	0.6	0.4	50.7	
000127184	Tetrachloroethylene	17.2	1.2	0.0	0.0	0.0	0.0	46.6	
Totals for Top	o 20 Chemicals:	2,348.6	1,401.5	1,435.7	1,395.9	666.3	1,000.5	13,181.2	
Totals for All		2,375.9	1,421.5	1,458.5	1,427.7	686.9	1,022.2	13,386.0	

Total Other Off-Site Transfers Top 20 Chemicals (Does Not Include Amount Recycled)

		Other Off-Site Transfers (Million Pounds):								
CAS Number		Base Yr.		Last Fi	ve Years	5	Tota	1 Transfers		
or Category	Chemical Name	1988	1992	1993	1994	1995 1	996	88-96		
000010982	Zinc Compounds	10.2	4.0	12.8			7.7	89.6		
000010450	Manganese Compounds		2.5	2.7			1.6	24.4		
000067561	Methanol	3.6	2.6	2.8	1.8	3 1.0	0.6	21.9		
000010040	Barium Compounds	2.5	1.4	0.5	0.4	0.4	0.3	15.6		
000108883	Toluene	3.4	0.8	0.6	0.7	0.5	0.6	13.1		
000010100	Copper Compounds	1.4	0.7	0.4	0.4	0.3	0.2	9.8		
000085449	Phthalic Anhydride	3.3	0.2	0.1	0.0) 0.0	2.4	8.7		
000010420	Lead Compounds	1.3	0.3	0.8	1.0) 0.7	0.6	8.4		
007440508	Copper	1.1	0.8	0.8	0.9	0.8	0.8	8.4		
001330207	Xylene (Mixed Isomers)	1.6	0.3	0.5	0.7	0.7	0.4	8.4		
000078933	Methyl Ethyl Ketone	2.0	0.3	0.4	0.3	3 0.3	0.3	8.2		
007439965	Manganese	1.1	0.2	0.1	0.4	0.5	0.7	7.6		
000010090	Chromium Compounds	0.8	0.7	1.0	0.7	0.6	1.2	7.3		
000075092	Dichloromethane	0.4	0.9	0.6	0.5	5 0.5	0.3	5.2		
007440666	Zinc (Fume or Dust)	1.3	1.3	0.1	0.1	0.1	0.4	5.2		
007782505	Chlorine	2.6	0.0	0.0	0.0	0.0	0.0	4.7		
007440473	Chromium	1.0	0.3	0.2	0.2	2 0.3	0.2	3.7		
000071556	1,1,1-Trichloroethane	0.9	0.4	0.3	0.1	0.0	0.0	3.6		
007440020	Nickel	0.5	0.3	0.1	0.1	0.1	0.1	3.4		
000100425	Styrene	0.6	0.2	0.1	0.2	2 0.4	0.4	3.3		
Totals for To	p 20 Chemicals:	41.9	18.2	24.9	24.2	2 23.6	18.8	260.5		
Totals for All		50.6	23.1	30.1	29.3			312.2		

Total Other Off-Site Transfers Top 20 Chemicals Chemicals With Significant Human Health Effects (Does Not Include Amount Recycled)

Total Releases and Transfers Top 20 Chemicals (Does Not Include Amount Recycled)

	Pounds):							
CAS Number		Base Yr.		Last Fiv	ve Years		Т	otal
or Category	Chemical Name	1988	1992	1993	1994	1995	1996	88-96
000010982	Zinc Compounds	16.2	11.2	21.7	22.4	28.0	24.2	167.4
000108883	Toluene	21.8	10.1	7.8	8.3	7.0	5.3	107.7
000067561	Methanol	9.9	7.4	8.0	5.8	4.7	4.3	68.3
000010450	Manganese Compounds	3.2	8.0	7.9	7.8	8.2	7.0	63.5
001330207	Xylene (Mixed Isomers)	9.3	6.1	5.5	5.9	4.1	3.9	60.7
000071556	1,1,1-Trichloroethane	11.3	6.6	2.6	0.8	0.4	0.1	51.8
000078933	Methyl Ethyl Ketone	6.7	4.3	4.4	3.9	3.2	2.9	45.6
000075150	Carbon Disulfide	3.3	4.7	4.9	5.5	5.7	5.7	43.2
007782505	Chlorine	7.1	4.6	2.9	3.7	2.5	2.0	38.5
000079016	Trichloroethylene	4.9	4.2	3.9	4.1	3.5	3.2	37.1
000075092	Dichloromethane	4.5	3.6	3.5	3.5	3.2	2.8	33.4
000010230	Glycol Ethers	3.2	3.8	3.3	3.2	3.3	2.7	31.6
007440666	Zinc (Fume or Dust)	4.9	4.6	4.1	4.3	0.3	0.5	30.7
000074851	Ethylene	5.3	2.0	1.7	1.3	1.0	1.6	21.8
000100425	Styrene	2.5	1.8	2.0	2.4	2.5	2.4	19.4
000108952	Phenol	2.3	2.0	1.7	1.8	2.1	2.2	18.8
000010040	Barium Compounds	2.6	1.7	0.7	0.4	0.4	0.3	17.5
007439965	Manganese	1.8	0.9	0.8	1.1	1.2	1.5	14.5
000010420	Lead Compounds	1.6	0.8	1.5	1.7	1.6	1.6	14.1
000108101	Methyl Isobutyl Ketone	2.5	1.4	1.0	1.3	1.5	0.9	13.5
Totala for To	- 20 Chaminala	124.0	20.2	20.0	80.2	04.4	75 1	200_1
	p 20 Chemicals:	124.9	89.8	89.9	89.2			899.1
Totals for All	Cnemicals:	166.5	110.8	110.0	109.6	102.5	96.1	1,138.6

Facilities in 188 individual four-digit SIC codes have reported toxic chemical releases from 1988 through 1996. Tables 26 and 27 summarize the release and transfer information for these SIC codes.

Table 26

Total Release and Transfer Amounts Top 20 SIC Codes

Total Releases and Transfers (Million Pounds):

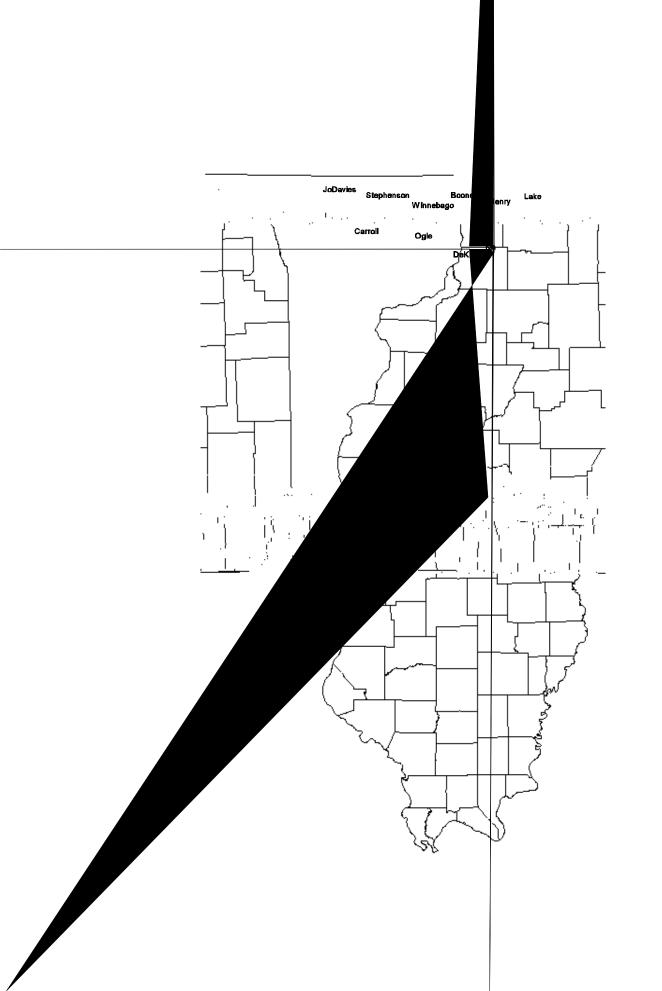
% Increase/

Total Release and Transfer Amounts Chemicals With Significant Human Health Effects Top 20 SIC Codes

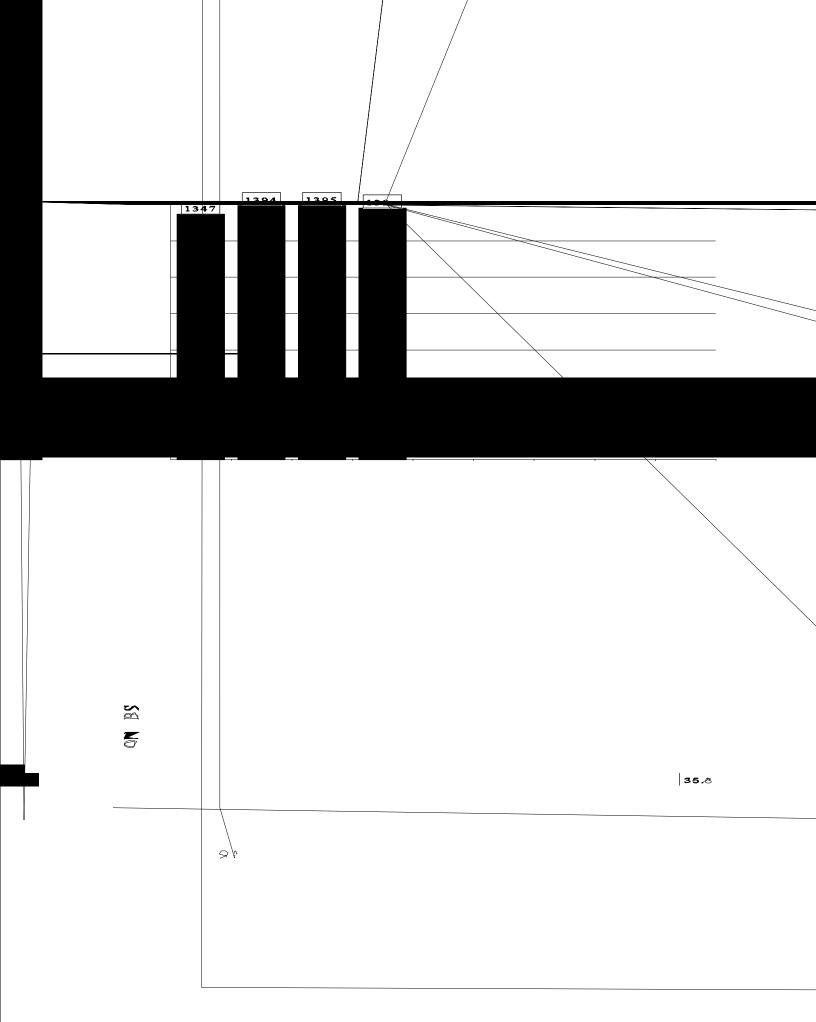
	Total Releases and Transfers (Million Pounds):									
							1		crease/	
SIC	Bas	se Yr.		Last	Five Y	ears	Т	otal 1	Decrease	:(-)
Code	Description	1988	1992	1993	3 1994	4 1995	5 1996	88-	96 88-	-96
3312	Steel Works, Blast Furnaces (Including Coke Ovens) and Rolling Mills	6.	4	8.8	9.2	9.0	9.2	8.6	80.8	34.4
3089	Plastic Products, Not Elsewhere Classified	4.	9	5.3	5.4	5.9	5.9	6.1	49.7	24.5
2752	Commercial Printing, Lithographic	5.	6	3.8	2.0	1.7	1.4	1.8	32.1	-67.9
2821	Plastic Materials, Synthetic Resins and Nonvulcanizable Elastomers	5.	2	3.4	2.9	3.0	2.6	2.5	31.2	-51.9
2865	Cyclic Organic Crudes and Intermediates, and Organic Dyes and Pigments	4.	2	2.1	1.7	1.6	0.6	0.6	19.4	-85.7
2851	Paints, Varnishes, Lacquers, Enamels and Allied Products	3.	1	1.3	1.1	0.7	0.7	0.8	16.5	-74.2
2754	Commercial Printing, Gravure	5.	0	0.6	0.6	1.6	1.2	0.9	13.0	-82.0
2911	Petroleum Refining	1.	9	1.3	1.2	1.2	0.6	0.7	12.7	-63.2
3711	Motor Vehicles and Passenger Car Bod	lies 2.	3	1.2	1.1	1.0	0.7	0.6	12.4	-73.9
3086	Plastic Foam Products	0.	7	0.8	1.4	1.8	2.0	1.9	12.2	171.4
2819	Industrial Inorganic Chemicals, Not Elsewhere Classified	1.	3	1.4	1.4	1.5	1.1	0.9	11.6	-30.8
2672	Coated and Laminated Paper, Not Elsewhere Classified	1.	7	1.4	1.4	1.6	0.8	0.5	11.0	-70.6
3714	Motor Vehicle Parts and Accessories	0.	8	0.7	1.0	0.6	0.5	0.2	10.1	-75.0
3471	Electroplating, Plating, Polishing, Anodizing and Coloring	1.	1	0.8	1.0	0.9	0.9	1.3	9.5	18.2
3053	Gaskets, Packing, and Sealing Devices	1.	4	0.6	0.7	0.6	1.1	0.3	8.7	-78.9
3499	Fabricated Metal Products, Not Elsewhere Classified	1.	1	0.7	0.8	0.5	0.5	1.5	8.2	36.4
3479	Coating, Engraving, and Allied Service Not Elsewhere Classified	es, 1.	3	0.7	0.6	0.8	0.6	0.5	7.0	-61.5
3317	Steel Pipe and Tubes	0.	5	0.8	0.9	0.9	0.8	0.7	6.6	40.0
3671	Electron Tubes	0.		0.9	1.0	1.1	0.5	0.2	5.5	-75.0
2893	Printing Ink	0.	4	0.4	0.4	0.5	0.5	0.3	5.3	-25.0
	for Top 20 SIC Codes:	49.			35.8	36.5	32.2	30.9	363.5	
Totals	for All SIC Codes:	73.	2 5	51.5	49.5	51.2	45.3	42.9	514.8	

The geographic analysis of information in past reports has been summarized on a county basis. In an attempt to localize the reported information in an understandable format, the following summaries of toxic chemical release information presented in Tables 28 and 29 are based on five-digit zip codes. Also, the analysis presented here is restricted to air emissions to give some indication of the possibility of human exposure. Of course, ZIP code areas vary in size and population. Also, as the case has always been, toxic chemical release and transfer amounts are annual totals, so no inferences can be made from the following rankings relative to exposure dose and resultant human health effects of these air emissions in any of the ZIP codes listed. Figures 4 and 5 show the geographic location of the top ten ZIP codes, respectively, from Tables 28 and 29.

Table 28

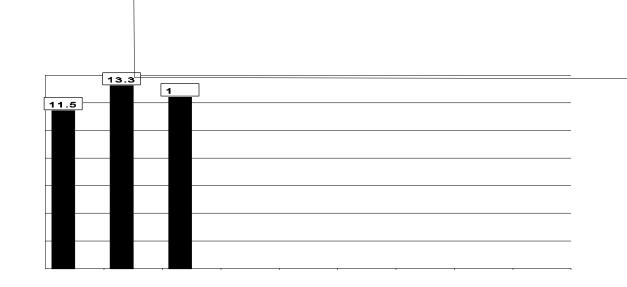

Total Air Emissions Top 20 ZIP Codes

		Total Air Emissions (Million Pounds):								
ZIP		В	ase Yr.		Las	st Five Ye	ars		Total	
Code	County	City	1988	1992	1993	1994	1995	1996	88-96	
61832	Vermilion	Danville	2.:	5 3.	7	3.9	4.2	3.9	4.0	33.3
61953	Douglas	Tuscola	5.	0 4.	6	3.0	3.7	2.5	2.1	31.8
60450	Grundy	Morris	4.	8 2.	3	2.0	1.7	1.3	1.9	22.1
60501	Cook	Summit	1.:	51.	8	1.4	1.6	0.6	0.5	14.4
60638	Cook	Bedford Park	1.	8 1.	5	1.4	1.6	1.6	1.5	14.2
60633	Cook	Chicago	1.	91.	6	1.3	1.3	1.2	0.7	13.0
62206	St. Clair	Sauget	2.2	71.	5	0.8	0.7	0.8	0.8	12.6
62454	Crawford	Robinson	2.	1 0.	9	1.0	0.9	1.2	0.4	12.6
61938	Coles	Mattoon	2.4	4 1.	2	0.7	0.7	0.6	0.3	12.2
61350	LaSalle	Ottawa (Rural)	T	jt -0.02 8	39 9.74 jt	-0.02830.4	4			



Total Air Emissions Chemicals With Significant Human Health Effects Top 20 ZIP Codes

		Total Air Emissions (Million Pounds):							
ZIP		Bas	se Yr.	_	Last Five	e Years		Te	otal
Code	County	City	1988	1992	1993	1994 19	995 19	96	88-96
61832	Vermilion	Danville	2.2	3.4	3.7	4.2	3.9	3.9	31.2
60638	Cook	Bedford Park	1.5	1.3	1.3	1.6	1.6	1.6	12.9
61938	Coles	Mattoon	2.4	1.2	0.7	0.7	0.6	0.6	11.7
61350	LaSalle	Ottawa (Rural)	2.1	1.0	1.1	1.1	1.1	1.1	11.0
60501	Cook	Summit	1.5	1.2	1.1	1.1	0.4	0.4	10.6
61054	Ogle	Mount Morris	1.6	1.2	1.2	1.0	0.8	0.8	10.5
60616	Cook	Chicago	2.3	1.4	0.1	0.0	0.0	0.0	9.6
62454	Crawford	Robinson	1.6	0.6	0.6	0.5	1.1	1.1	9.1
62084	Madison	Roxana	1.1	0.8	0.7	0.7	0.3	0.3	7.2
62881	Marion	Salem	0.6	0.5	0.6	1.6	1.2	1.2	6.8
60633	Cook	Chicago	0.8	0.8	0.5	0.4	0.3	0.3	5.8
62206	St. Clair	Sauget	0.8	0.6	0.5	0.4	0.3	0.3	5.5
60131	Cook	Franklin Park	0.7	0.7	0.5	0.5	0.3	0.3	5.4
60455	Cook	Bridgeview	0.2	0.0	0.7	0.9	0.7	0.7	5.1
60185	DuPage	West Chicago	0.4	0.5	0.2	0.4	0.9	0.9	5.1
60007	Cook	Elk Grove Villag	e 0.7	0.6	0.6	0.5	0.5	0.5	5.0
60160	Cook	Melrose Park	0.8	0.8	0.8	1.0	0.5	0.5	5.0
60153	Cook	Broadview	2.5	0.0	0.0	0.0	0.0	0.0	4.7
60426	Cook	Harvey	0.5	0.5	0.5	0.6	0.5	0.5	4.5
61008	Boone	Belvidere	1.2	0.3	0.1	0.2	0.1	0.1	4.2
T. (.1. f	T		25.5	17.4	15.5	174	151	15 1	170.0
	Totals for Top 20 ZIP Codes: Totals for All ZIP Codes: 50.3				15.5	17.4	15.1	15.1	170.9
Totals fo	or All ZIP Code	es: 50.3	34.2	31.8	32.7	28.5	26.6	334.3	



The following charts depict the general trends of toxic chemical release information from 1988 through 1996. Figure 6 indicates the number of reporting facilities in each year. Figure 7 shows total releases and transfers for only the 798 facilities reporting all nine years. Figure 8 shows totals for all reporting facilities for those years. Figures 9 through 13 show the totals for each release and transfer route.

<u>О.</u> Б				
_				

(Note: Due to the length of the instructions for completing Form R, only the form is included in Appendix A.)

, <u> </u>			
	yana		
		I	
2			
4			
k-			
<i>(</i> 7			
,			
P			
· · · · · · · · · · · · · · · · · · ·	······	1 diture	
å			
,	<u>}</u>		

	- 1 - 1			.				
4.7	Dun & Bradstreet Number(s) (9 digits)	4.8		tification Number(s) D. No.) (12 characters)	4.9	Facility NPDES Permit Number(s) (9 characters)	4.10	Underground Injection Well Code (UIC) I.D. Number(s) (12 digits)
a.	•	a.			a.		a.	
b.		b.			b.	·····	b.	
SE	CTION 5. PARENT CO	MPAN	Y INFOR	RMATION				
5.1	Name of Parent Company		NA					
5.2	Parent Company's Dun & Bra	dstreet N	umber	□ NA	(9 digit:	5)		

्र स्		
1		
	ť	
at		
I additional pages of Part II, Section 5.5 and attached, in	altate the total number of p	

and indicate which Part II, Section 5.3 page this is, here EPA Form 9350-1 (Rev. 04/97) - Previous editions are obsolete.

Range Codes: A = 1 - 10 pounds; B = 11 - 499 pounds; C = 500 - 999 pounds.

(example: 1,2,3, etc.)

ļ	<i>b</i>									
										Ń
										ł
<u>\</u>										
1-1- -										
177				r v		 	<u>.</u>			
SE	CTION 6.2 TRANSFE	ERS TO OTHER C	OFF-SITE	E LOCATIONS		 				
	<u></u>				-					
		1								
7." 1										i
5										
										1
1										
		IDENTIFICATION		יורטו אחטח) ח	J.)					l l
	Site Location Name	· · · · · · · · · · · · · · · · · · ·			I					
		·								
										,
						 	1	-Site At	uress	
	City		State		County		•	Zip		
	Is location under cor	ntrol of reporting f	facility o	r parent comp	any?		Yes		No	

1

1

,

W			
h.,			

7			
1			
1I			
<u>5</u>			
- 20			
14	 	 	

LTM-			
			Ĭ.
		ja r	
14-			
- 1jux' ut.u maiute which rare in coording one re			
- box L und maloure which r art in bootento one is	· Pago	(,	

EPA Form 9350-1 (Rev. 04/97) - Previous editions are obsolete.

Range Codes: A= 1-10 pounds; B=11- 499 pounds; C= 500 - 999 pounds.

• 1 : 1	,								
				,					
<u>F</u> *=				· · · · · · · · · · · · · · · · · · ·	an - na is alta anna an anna				
.) ⁻ &.	p.		լե.		`
		a.		b.	с		·····	8.1	0.4
, ,		_					1		
	~ V								
ÿ									
	,					1			
•									
-	•		is report? (Check o				ing emitting em		
L		, , , , ,	t to EPCRA Section 3 ing, dumping, or disp		onment." Do not	include any qua	antity treated on-	site or off-site.	y,
I	EPA Forr	n 9350 - 1 (Hev. 04/97)	- Previous editions are ob	SOIETE.					

Chemical Manufacturers Association, Chemicals in the Community: Methods to Evaluate Airborne Chemical Levels, May, 1988.

Kamrin, Michael A., Toxicology for the Citizen; Center for Environmental Toxicology, Michigan State University, 1985.

Ottoboni, M. Alice, *The Dose Makes the Poison: A Plain-language Guide to Toxicology*, Berekely: Vincente Books, 1984.

Sittig, Marshall, *Handbook of Toxic and Hazardous Chemicals and Carcinogens*, Park Ridge, NJ: Noyes Publications, 1985.

Tox FAQs; Fact sheets available from U.S. Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry;

Casarett, Louis J.; Doull, John, Casarett & Doull's Toxicology, New York: Macmillan Publishing Co., 1986.

Gosselin, Robert E.; Smith, Roger P.; Hodge, Harold C.; Braddock, Jeanett E., *Clinical Toxicology of Commercial Products*, Baltimore: Williams and Wilkins, 1984.

"Guidelines for Carcinogen Risk Assessment," a5 HarolrRda5 Harot4s3Op*8 C.; Bg3of CB-25.S anem, R 246.24 7. -3ol. 51acmo. 0.9

THIS PAGE INTENTIONALLY LEFT BLANK

Chemical information sheets for the following chemicals are available from the Illinois EPA, Office of Chemical Safety:

Alachlor Aldrin/Dieldrin Ammonia Arsenic Benzene 1,3-Butadiene Cadmium Carbon Monoxide Carbon Tetrachloride Chloroform Chromium Coal Tar Creosote Cyanide Dichlorobenzenes Dichloroethanes Dichloroethylenes Di(2-ethylhexyl)phthalate Ethylbenzene Lead Mercury Methylene Chloride Methyl Ethyl Ketone Methyl Isobutyl Ketone Naphthalene Nickel Ozone Pentachlorophenol Polychlorinated Biphenyls Polychlorinated Dibenzodioxins and Dibenzofurans Polycyclic Aromatic Hydrocarbons Sulfur Dioxide Tetrachloroethylene Toluene Triazine Herbicides 1,1,1-Trichloroethane Trichloroethylene Trifluralin Vinyl Chloride Xylene Glossary

The glossary of terms and the chemical information sheet for Ammonia are included as examples. For further information, please write to:

Office of Chemical Safety Illinois Environmental Protection Agency P. O. Box 19276 1021 N. Grand Avenue East Springfield, Illinois 62794-9276

absorption - the movement of a chemical into the bloodstream or other body fluid or tissue after its entrance into the body through the skin, lungs or gastrointestinal tract.

acute - sharp, severe; having a relatively rapid onset, often with severe symptoms and a relatively short course. In toxicology refers to a single large exposure to a chemical (acute exposure), or to the development of symptoms of poisoning soon after a single exposure to a substance (acute toxicity).

ACGIH - the American Conference of Governmental Industrial Hygienists. It recommends upper limits (see TLV) for exposure to workplace chemicals.

bioconcentration - the process in and by which chemical substances are accumulated in living organisms above their concentration in the environment. For example, a chemical is spilled into a river or lake and is ingested and stored by small organisms like plankton; small fish eat the plankton; and large fish eat the smaller fish. As this process occurs, the chemical becomes thousands of times more concentrated in the tissues of the large fish than in the plankton or the water. Usually occurs with fat-soluble compounds rather than water-soluble compounds.

biodegradation - the breaking down of an organic substance, resulting from the complex action of living organisms.

cancer - a group of diseases characterized by malignant, uncontrolled growth of cells of body tissue (tumors).

carcinogen - a term applied generally to any substance that is capable of producing cancer or increasing the growth and spreading of tumors in an organism.

mg/m3

The following information is an example of readily available data regarding the general nature and effects of trichloroethylene. The reader is encouraged to consult other sources or an appropriate professional if a more detailed explanation for specific concerns is desired.

Trichloroethylene (TCE; trichloroethene; ethylene trichloride) is a nonflammable, highly volatile, colorless liquid used extensively for degreasing of fabricated metal parts. It has been estimated that from 80 to 95 percent of the TCE produced in the United States is used in the degreasing process. The remaining 5 to 20 percent is either exported or used for miscellaneous applications. Miscellaneous uses of TCE include paint-stripping formulations, adhesive formulations, carrier solvent in industrial paint systems, and a solvent in textile dyeing and finishing. TCE has been discontinued in the United States for use as an inhalation anesthetic, in fumigant mixtures, and as an extractant in the decaffeination of coffee because of environmental and health restrictions.

Trichloroethylene has been produced commercially in the United States since 1925 and is also produced in Europe and Japan. The production of TCE has been declining in recent years due primarily to legislation restricting its use and emissions. According to statistics published by the U.S. International Trade Commission (1982), 129,397 tons of TCE were produced in 1981.

There are no known natural sources of TCE. TCE enters the environment through evaporation into the air during production and use. Although most environmental contamination of TCE is released to the air, it has also been found as a contaminant of rivers, lakes, drinking waters, soils, food and drink, marine and freshwater organisms, and humans. TCE in surface waters may occur as a result of direct contamination or from atmospheric contamination by rainfall. However, due to certain chemical properties, TCE is not expected to persist in the open environment. It may, however, persist for long periods of time if it becomes "sheltered" in an area of the environment where evaporation and other physical and chemical processes of removal are difficult (especially in groundwater).

Short-term exposure -- Numerous cases of short-term and accidental exposure to TCE have been documented and provide some information about its effects on humans. These exposures usually occur through inhalation of vapors released in industrial accidents and through accidental ingestion or skin contact. Exposure to TCE vapor may cause irritation of the eyes, nose, and throat. The liquid, if splashed in the eyes, may cause burning, irritation, and damage. Repeated or prolonged skin contact with the liquid may cause inflammation of the skin.

Short-term exposure to high concentrations of TCE results in depression of the central nervous system. The symptoms most often described are mild eye irritation, nausea, dizziness, headache, tremors, and confusion. Mild irritation occurs at levels near 200 ppm (parts per million). Hand steadiness, coordination, and possibly adhtf dama, al carsist in the 27use

Long-term exposure -- Case reports indicate that symptoms involved in short-term exposure situations also are present in long-term exposure but in more extreme and persistent forms. Extended exposure can increase the duration and intensity of nausea, dizziness, and headache, but eye irritation and sense of smell are reduced. Confusion, reduced reasoning ability, impaired short-term memory, tremors, and muscular incoordination also are

THIS PAGE INTENTIONALLY LEFT BLANK

The Condensed Chemical Dictionary, New York: Van Nostrand Reinhold Company, 1993.

Farm Chemicals Handbook, Willoughby, OH: Meister Publishing Co., 1997.

Fire Protection Guide on Hazardous Materials, National Fire Protection Association, NFPA #HAZ-91, 1991.

Sax, N. Irving, Dangerous Properties of Industrial Materials, New York: Van Nostrand Reinhold Co., 1984.

U.S. EPA Chemical Profiles

THIS PAGE INTENTIONALLY LEFT BLANK

THIS PAGE INTENTIONALLY LEFT BLANK

	Base Year		Last Five Years							Total			
County	1988		1992			95	1996		88-96				
Livingston	0.3 /	5	0.1 /	9	0.1 /	9	0.2 /	10	0.1 /	8	0.2 /	7	1.6
DeWitt	0.1 /	1	0.4 /	2	0.1 /	3	0.0 /	2	0.0 /	1	0.0 /	1	1.5
Champaign	0.4 /	9	0.0 /	10	0.0 /	9	0.0 /	9	0.1 /	6	0.1 /	6	1.4
Jefferson	0.1 /	5	0.1 /	3	0.0 /	3	0.3 /	3	0.1 /	5	0.0 /	4	1.1
Lawrence	0.0 /	0	0.1 /	1	0.2 /	1	0.1 /	1	0.1 /	1	0.0 /	0	0.9
Clark	0.5 /	3	0.1 /	2	0.1 /	2	0.1 /	1	0.0 /	1	0.0 /	1	0.9
Edgar	0.0 /	4	0.1 /	2	0.1 /	3	0.1 /	4	0.2 /	3	0.2 /	5	0.9
Montgomery	0.1 /	3	0.1 /	2	0.1 /	2	0.1 /	3	0.1 /	2	0.1 /	2	0.9
Lee	0.1 /	4	0.1 /	4	0.2 /	5	0.1 /	7	0.1 /	6	0.1 /	5	0.8
Henry	0.0 /	3	0.0 /	3	0.0 /	4	0.0 /	6	0.0 /	4	0.0 /	3	0.7
McDonough	0.1 /	3	0.1 /	6	0.1 /	5	0.1 /	6	0.1 /	4	0.1 /	4	0.7
Putnam	0.2 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.6
Iroquois	0.1 /	2	0.0 /	2	0.1 /	3	0.1 /	3	0.1 /	1	0.0 /	1	0.6
Clay	0.1 /	3	0.1 /	2	0.0 /	2	0.0 /	2	0.1 /	2	0.0 /	2	0.5
Wayne	0.1 /	2	0.0 /	2	0.0 /	3	0.0 /	2	0.1 /	2	0.1 /	2	0.5
White	0.1 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.3
Piatt	0.1 /	2	0.0 /	2	0.1 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.3
Woodford	0.0 /	3	0.0 /	3	0.1 /	3	0.0 /	3	0.0 /	2	0.0 /	2	0.3
Randolph	0.1 /	5	0.1 /	4	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.3
Clinton	0.1 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	0	0.0 /	0	0.2
Logan	0.1 /	4	0.0 /	3	0.0 /	3	0.0 /	4	0.0 /	1	0.0 /	0	0.2
Cass	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.2
Bond	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	2	0.1
Massac	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.1
Saline	0.0 /	0	0.0 /	0	0.0 /	0	0.1 /	0	0.0 /	0	0.0 /	0	0.1
Fayette	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.1
Wabash	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.1
Perry	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.1
Christian	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	2	0.0 /	2	0.1
Macoupin	0.0 /	2	0.0 /	0	0.0 /	1	0.0 /	2	0.0 /	1	0.0 /	0	0.1
Stark	0.0 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.1
Hancock	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.1
Warren	0.0 /	1	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	3	0.0 /	2	0.1
Carroll	0.0 /	2	0.0 /	4	0.0 /	4	0.0 /	3	0.0 /	4	0.0 /	2	0.1
Pike	0.0 /	3	0.0 /	2	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.0
Cumberland	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	0	0.0 /	0	0.0
Ford	0.0 /	1	0.0 /	2	0.0 /	2	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Fulton	0.0 /	1	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0
Mercer	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Union	0.0 /	0	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Mason	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Edwards	0.0 /	1	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0 /	0	0.0
Shelby	0.0 /	1	0.0 /	Ő	0.0 /	0	0.0 /	0	0.0 /	Ő	0.0 /	1	0.0
Jasper	0.0 /	0	0.0 /	0	0.0 /	1	0.0 /	1	0.0 /	1	0.0 /	1	0.0
Johnson	0.0 /	0	0.0 /	0	0.0 /	1	0.0 /	1	0.0 /	0	0.0 /	0	0.0
	2.07	2	2.07	Ŭ	2.0 /	-	,	-	,	~	,	~	