

FINAL ENVIRONMENTAL MONITORING PLAN (EMP)

FOR

BAILLY GENERATING STATION ADVANCED FLUE GAS

SUBMITTED TO U.S. DEPARTMENT OF ENERGY PITTSBURGH ENERGY TECHNOLOGY CENTER P.O. BOX 10940

BY

PURE AIR ON THE LAKE, LIMITED PARTNERSHIP C/O AIR PRODUCTS AND CHEMICALS, INC. 7201 HAMILTON BOULEVARD ALLENTOWN, PA 18195-1501

NORTHERN INDIANA PUBLIC SERVICE COMPANY 5265 HOHMAN AVE. HAMMOND, IN 46320

JANUARY, 1991

PURE AIR, NORTHERN INDIANA

BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

ENVIRONMENTAL MONITORING PLAN (EMP)

TABLE OF CONTENTS

SECTION 1.0 INTRODUCTION	<u>PAGE</u> 1-1	
	1 - 1	
		61
1.2.2 DURATION OF ENVIRONMENTAL MONITORING	1-2	
1.2.3 ENVIRONMENTAL MEDIA AND PARAMETERS	1-2	
1.2.4 DATA COLLECTION	1-5	
1.3 ORGANIZATION OF EMP	1-5	
2.0 PROJECT DESCRIPTION	2-1	
2.1 PROJECT PROPONENTS, PURPOSE AND LOCATION	2-1	
2.2 PROJECT PHASES	2-5	
2.3 PROJECT SCHEDULE	2-5	
2.4 PROCESS DESCRIPTION	2-6	
2.5 EMISSIONS AND DISCHARGES	2-8	
2.5.1 ATMOSPHERIC_EMISSIONS	2-18	
2.5.3 SOLID WASTES	2-8	
	in t	
2.6.2 WASTEWATER DISCHARGES CONTROL	2-10	ž
2.6.3 SOLID WASTES CONTROL	2-11	

I

SECTION	PAGE
	<u> </u>
3.0 EXISTING ENVIRONMENT	3-1
3.1 ATMOSPHERIC RESOURCES	3-1
3.1.2 AIR QUALITY	ゴービ
	3-8
J.J WAILA REJUUNGES	J-16
3.3.1 GROUNDWATER	3-12
3 3 2 SURFACE WATER	3-16
3.4.1 TERRESTRIAL	3-18
3.4.1.1 VEGETATION	3-20
<u>3.4.1.2 VERTEBRATES</u>	3-22
3.4.2.3 ZOOPLANKTON	3-27
3.4.2.4 PHYTOPLANKTON	3-30
3.5 SOCIOECONOMIC RESOURCES	3-31
3.5.1 POPULATION	3-31
3.5.2 LAND USF	
3.5.2.2 INDUSTRIAL	3-34
3.5.2.3 AGRICULTURAL	3-34

PAGE

3.5.3 PUBL1	IC SERVICES	3-36	
3.5.3	3.1 SCHOOLS, HOSPITALS AND NURSING	3-36	
	HOMES		
3.5.3	3.2 TRANSPORTATION	3-36	
3.5.3	3.3 HISTORICAL SITES AND NATURAL	3-41	
	LANDMARKS		
3.5.3	3.4 RECREATION	3-42	
3.6 ENERGY AND M	MATERIALS RESOURCES	3-43	
3.7 REFERENCES		3-44	
4.0 CONSEQUENCES (IMP	ACTS) OF THE PROJECT	4-1	
	· · ·		
4.2 LAND RESOURC	ES IMPACTS	4-5	
	······································		
4 2 WATER DESCHO	2726 UD 4272	A 7	

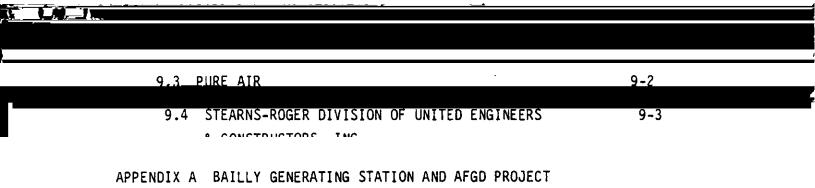
	4.4.2 OPERATION	4-13
	4.4.1 CONSTRUCTION	4-13
4.	4 ECOLOGICAL RESOURCES IMPACTS	4-13
	4.3.2.2 OPERATION	4-8
	4.3.2.1 CONSTRUCTION	4-8
	4.3.2 SURFACE WATER	4-8
	4.3.1.2 OPERATION	4-7

....

SECTION

SECTION		PAGE
	4.5.1 CONSTRUCTION	4-14
	4.5.1.3 VISUAL	4-15
	4.5.2 OPERATION	4-16
	4.5.2.1 TRANSPORTATION	4-16
	4.5.2.2 NOISE	4-16
	4.5.2.3 VISUAL	4-17
4.€	6 ENERGY AND MATERIALS RESOURCES IMPACTS	4-17
	4.6.1 CONSTRUCTION	4-17
	4.6.2 OPERATION	4-17
5.3	3 WATER RESOURCES MITIGATION MEASURES	5-3
5.4	4 ECOLOGICAL RESOURCES MITIGATION MEASURES	5-4
5.5	5 SOCIOECONOMIC RESOURCES MITIGATION MEASURES	5-4
Ē,		
6.0 ENV	VIRONMENTAL MONITORING	6-1
6.1		6-14
I	CHARACTERIZATION FOR CLASS I MONITORING)	
I	6.1.1 INTRODUCTION	6-14
I	6.1.2 ENVIRONMENTAL STUDIES	6-15
4		

SECTION		PAGE
6.1.3	OPERATING PERFORMANCE TESTS	6-15
	6.1.3.1 BAILLY STATION OPERATING CONDITIONS	6-15
	6.1.3.2 PROCESS OPERATING CONDITIONS	6-16
	6.1.3.3 ENVIRONMENTAL EMISSIONS AND DISCHARGES	6-19
6.1.4	SCHEDULE	6-27
	6.1.4.1 DURATION ~	6-27
	6.1.4 2_ FREQUENCY.	6-28
6.2.3	MONITORING REQUIREMENTS AND ENVIRONMENTAL MEDIA	6-30
	6.2.3.2 WASTEWATER DISCHARGES	6-34
	6.2.3.3 SOLID WASTES	6-40
6.2.4	SCHEDULE	6-41
	6.2.4.1 DURATION	6-41
	6.2.4.2 FREQUENCY	6-41
(LLAS:	S III MUNITURING)	
6.3.1	INTRODUCTION	6-42
6.3.2	MONITORING PREDICTED IMPACTS	6-42
6.3.3	MONITORING SUCCESS OF MITIGATION MEASURES	6-43
6.3.4	SUPPLEMENTAL MONITORING MEDIA	6-43
6.4 QUALII	Y ASSURANCE/QUALITY CONTROL PROGRAM	6-44
6.4.1	AIR EMISSIONS MONITORING QA/QC PROGRAM	6-44


....

SECTION		PAGE
	6.4.2 WASTEWATER DISCHARGES MONITORING QA/QC PROGRAM	6-61
	C.4.3 SOLTO AND SOLID WHOTED HOWETONING QA/QC PROGRAM	0-02
	6.4.4 SOUND LEVEL MONITORING QA/QC PROGRAM	6-63
6.5	INDUSTRIAL HYGIENE MONITORING REQUIREMENTS	6-64
7.0 INTEGRATION 7.1 INTROD	OF MONITORING ACTIVITIES	7-1 7-1
		3.1.1
	MENT AND REPORTS	8-1
	ANAGEMENT SYSTEM	8-1
E	AND CONTENT OF MONITORING REPORTS	8-2
	CEATTON T ANEANTEN OF ANALTER OF MRAR	
8.3.3	DISCHARGES	8-4

...

SECTION

		8.3.3.1 AIR EMISSIONS	8-4
		8.3.3.2 WASTEWATER DISCHARGES	8-5
		8.3.3.3 SOLID AND SOLID WASTE DISCHARGES	8-6
		8.3.3.4 PLANT OPERATING CONDITIONS	8-6
	8.3.4	SECTION IV COMPLIANCE	8-6
	8.3.5	SECTION V PROBLEMS AND RECOMMENDATIONS	8-7
	8.3.6	SECTION VI APPENDICES	8-7
8.4	CONFID	DENTIAL INFORMATION	8-7

ENVIRONMENTAL PERMITS

LIST OF TABLES

1.2-1 ENVIRONMENTAL MEDIA AND PARAMETERS TO BE MONITORED 1-3	
3.2-1 MODIFIED MERCALLI SCALE 3-9	
3.2-1 MODIFIED MERCALLI SCALE 3-9	
3.2-1 MODIFIED MERCALLI SCALE 3-9	
3.3-1 LAKE MICHIGAN FLOOD ELEVATIONS (NATIONAL GEODETIC 3-19 VERTICAL DATUM-1929)	
3 4-1 ARUNDANT BIRD SPECIES KNOWN TO NEST IN THE INDIANA DUNES 3-24	
3.4-2 FISH SPECIES VERIFIED IN THE AQUATIC COMMUNITY OF THE 3-26 BAILLY GENERATING STATION VICINITY	
3.5-1 POPULATION DATA FOR INCORPORATED COMMUNITIES WITHIN 3-32	
3.5-2 MAJOR MANUFACTURING ACTIVITY WITHIN A 5-MILE RADIUS OF 3-35	

r 1967

L

<u>h</u>491

LIST OF TABLES (CONTD)

3.5-3 HOSPITALS WITHIN A 12-MILE RADIUS OF THE 3-37 BAILLY GENERATING STATION

r.	8-1 0-1 -1-1		
	4.1-1	BAILLY STATION AND AFGD SYSTEM IDEM, OAM PERMIT	4-3
£	<u>() ;;;</u>		
	4.3-1	BAILLY STATION IDEM, OWM PERMIT LIMITS AND WASTEWATER	4-10
		DISCHARGES AND PERMIT LIMITS	
		DISCHARGES AND PERMIT LIMITS	
15	·		
<u>. 2</u>	(+*	(CLASS I MONITORING)	
	6.0-2	COMPLIANCE ENVIRONMENTAL MONITORING	6-10
		(CLASS II MONITORING)	
	6.0-3		6-13
		(CLASS III MONITORING)	
	6.1-1	BAILLY STATION EXISING STACK IDEM, OAM PERMIT LIMITS	6-17
		FOR OPERATION OF AIR POLLUTION CONTROL FACILITIES	•

- 2

LIST OF TABLES (CONTD)

.

6.1-2	BAILLY STATION PERMIT LIMITS AND MONITORING REQUIREMENTS FOR WASTEWATER DISCHARGES PRIOR TO NPDES PERMIT MODIFICATION	6-18
6.1.3	SOUND LEVEL MONITORING STATIONS	6-21
6.2-1	AFGD SYSTEM IDEM, OAM PERMIT LIMITS FOR CONSTRUCTION	6-31
 × • • •		
 6.2.2	BAILLY STATION/AFGD SYSTEM PERMIT LIMITS AND MONITORING REQUIREMENTS FOR WASTEWATER DISCHARGES	6-36
6.2.2		6-36 6-45

6.2-4 SAMPLING METHODS FOR CHEMICAL AND PHYSICAL 6-47 PARAMETERS TO BE MONITORED

-

LIST OF FIGURES

- ·

	FIGURE		PAGE
	2.1-1	BAILLY GENERATING STATION SITE LOCATION MAP	2-2
5			
	2.4-1	AFGD SYSTEM PROCESS FLOW SCHEMATIC	2-7
	3.1-1	WINDROSE '84 - '86 DUNE ACRES DATA	3-3
	3.2-1	CROSS-SECTION PERPENDICULAR TO THE LAKE MICHIGAN SHORELINE SHOWING GEOLOGY AND GROUNDWATER MOVEMENT NEAR THE BAILLY GENERATING STATION	3-7
	3.2-2	SOIL COMPOSITION - BAILLY GENERATING STATION AREA	3-11
	3.5-1	MAJOR ROADWAYS AND RECREATIONAL LAND USE	3-40
	4.3-1	BAILLY STATION/AFGD SYSTEM WASTEWATER FLOWS	4-11
, a	7.1-1	BAILLY STATION AEGD PROJECT ORGANIZATION AND	7-2

SECTION 1.0

INTRODUCTION

1.1 PURPOSE OF EMP

		Pure Air and the Northern Indiana Public Service Company (Northern
		Concerting Stating The pursers of the FMD is to (1)
<u>،</u> ا		
		the rationale for the scope and types of monitoring that will be
		Energy (DOE) on February 16, 1990 and subsequently approved by DOE on
	•	
		The environmental monitoring activities presented in the EMPO and EMP are based on expected project needs and current regulatory agency
h <u></u>		
		change is requisionly agency requirements change. Therefore, the
1		
		amendments to the EMP.
	1.2	SCOPE
		1.2.1 CATEGORIES OF ENVIRONMENTAL MONITORING
		<u>E </u>

Ľ

12		
· · · · · · · · · · · · · · · · · · ·		
		However, the project will consider reporting any available
		off-site ambient air quality monitoring data during the 3-year
<u>1927 -</u>		Analytic conied Manitonian will be enimonily for
		environmental characterization (Class I Monitoring) and
		compliance (Class II Monitoring) with regulatory agency
		project. Because the AFGD system will be operated in accordance
		with all applicable governmental rules and regulations, there
		will be minimal supplemental monitoring (Class III Monitoring).
		The environmental characterization and compliance monitoring will
		minimize or negate the need for supplemental monitoring. These
		monitoring activities are described in more detail in Section 6.0
		Environmental Monitoring.
	1.2.2	DURATION OF ENVIRONMENTAL MONITORING
		Environmental characterization monitoring will be performed prior
,		te end during the 2 years demonstration where of the success.
I		I DE
ØT		
* - }		
1		
	1.2.3	LAVIKONMENTAL MEDIA AND CANAMETERS
		Table 1 9 1 should the second
•		
		parameters are dependent, in part, on the sample location.

<u>____</u>___

.

÷. ,	
	DESULFURIZATION PROJECT
ENVIRONM	ENTAL MEDIA AND PARAMETERS TO BE MONITORED
	General/Metals ^d , Radioactivity ^e
le ljerdensked i sme	Naion Aniona Concurl/Hatala Dadionativity
A	
)	
ASI	TCLP Test, Indiana Neutral Leaching Method Test, Radioactivity, CaCl ₂ , Ca(OH) ₂ , MgCl ₂ , CaSO4·2H ₂ O, CaF ₂
Wastewater Treatment	Corrosivity, Ignitability, Reactivity, TCLP Test,

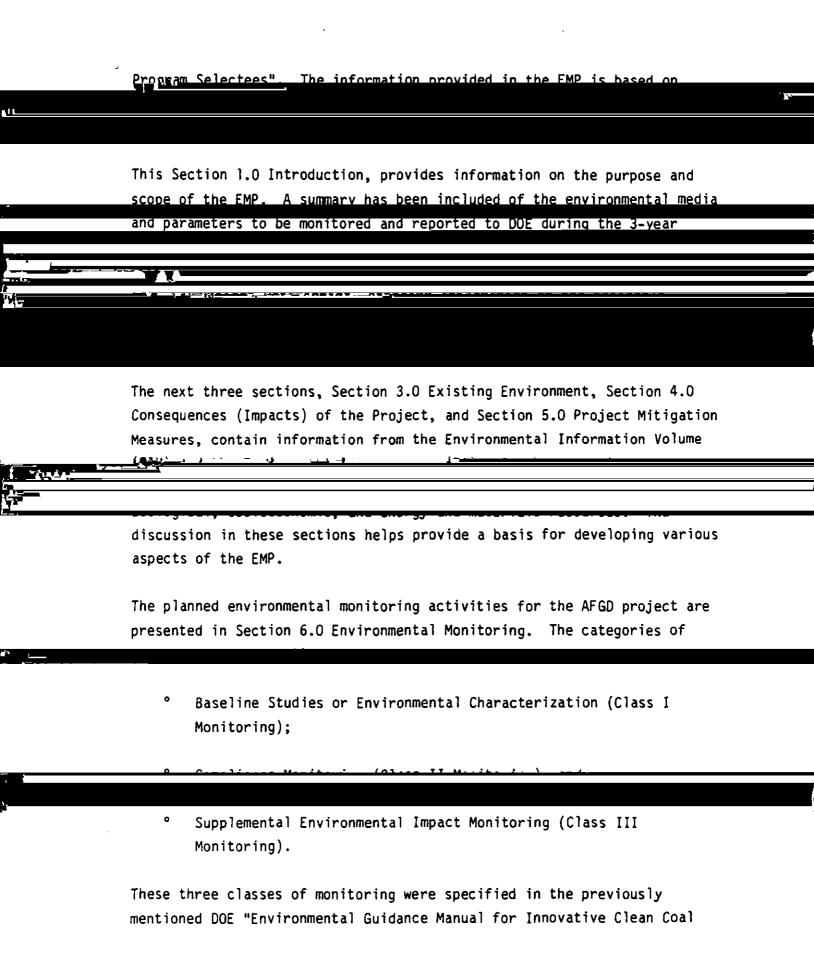
· •	and Grease, Chloride, TDS, Sulfate, Fluoride, BOD5, pH, Calcium, Magnesium, Fecal Coliform, General/Metals
Air Emissions	SO ₂ , Percent Oxygen or Carbon Dioxide, Opacity, Particulate Matter, Air Metals ^h , Unburned Hydrocarbons, Particle Size Distribution, SO ₃ /H ₂ SO ₄ , NO _X
Sand_	dRA lea Octave Band Snectrum

TABLE 1.2-1 (CONTD) PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS

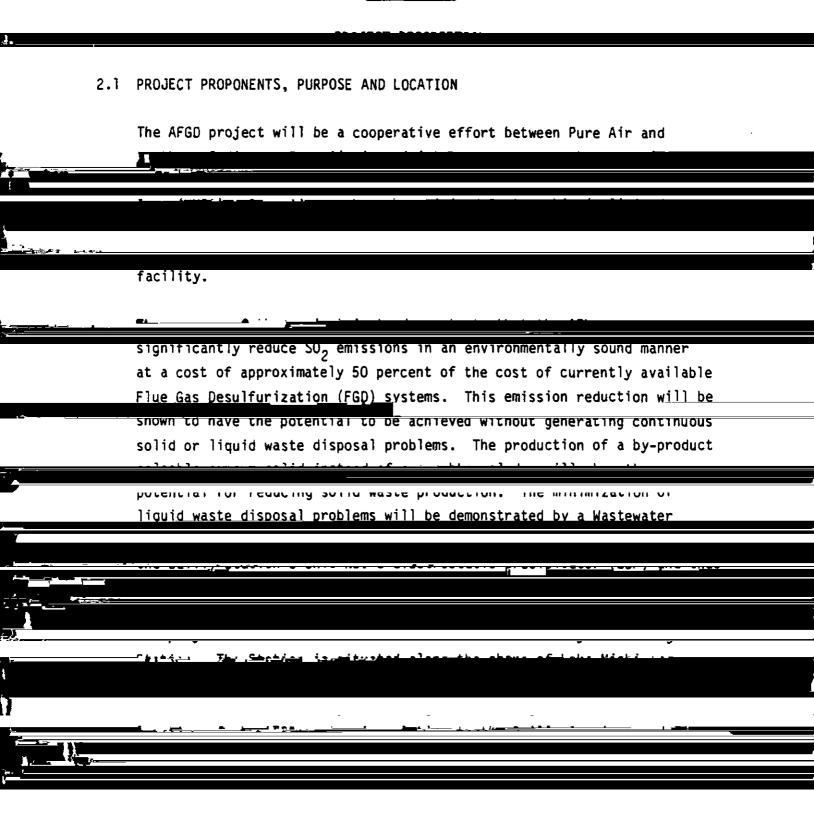
DESULFURIZATION PROJECT

ENVIRONMENTAL MEDIA AND PARAMETERS TO BE MONITORED

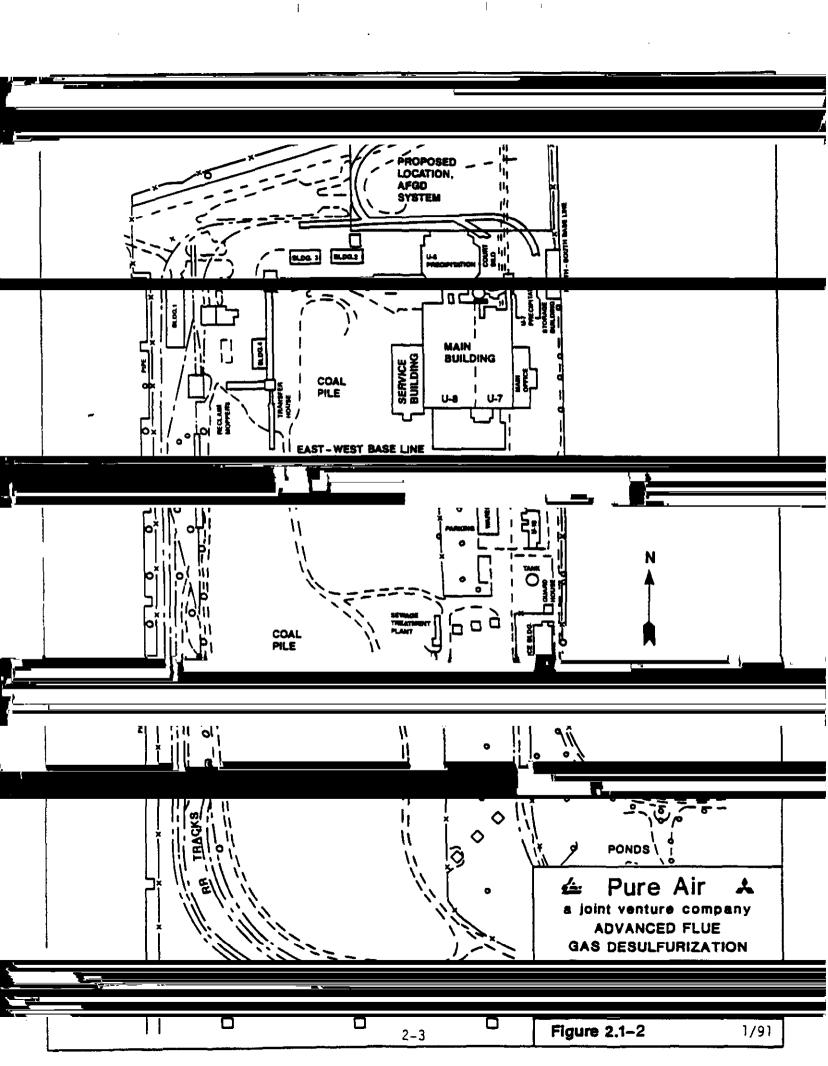
- <u>-</u>	La tug (statu tug tug tug tug tug tug tug tug tug t	E. MICE. N.L.
<u></u>		
g	 The Indiana Neutral Leaching Method Test is the TCLP without the addition of acetic acid and includes the for the following: Ba, B, Cl, Cu, Cn, F, Fe, Mn, Ni, <u>Na, SO4. Sulfide as S, TDS. Zn. and pH.</u> 	analyses
	Pb, Mn, Ni, Se, Ag, and Zn.	, or, ou,

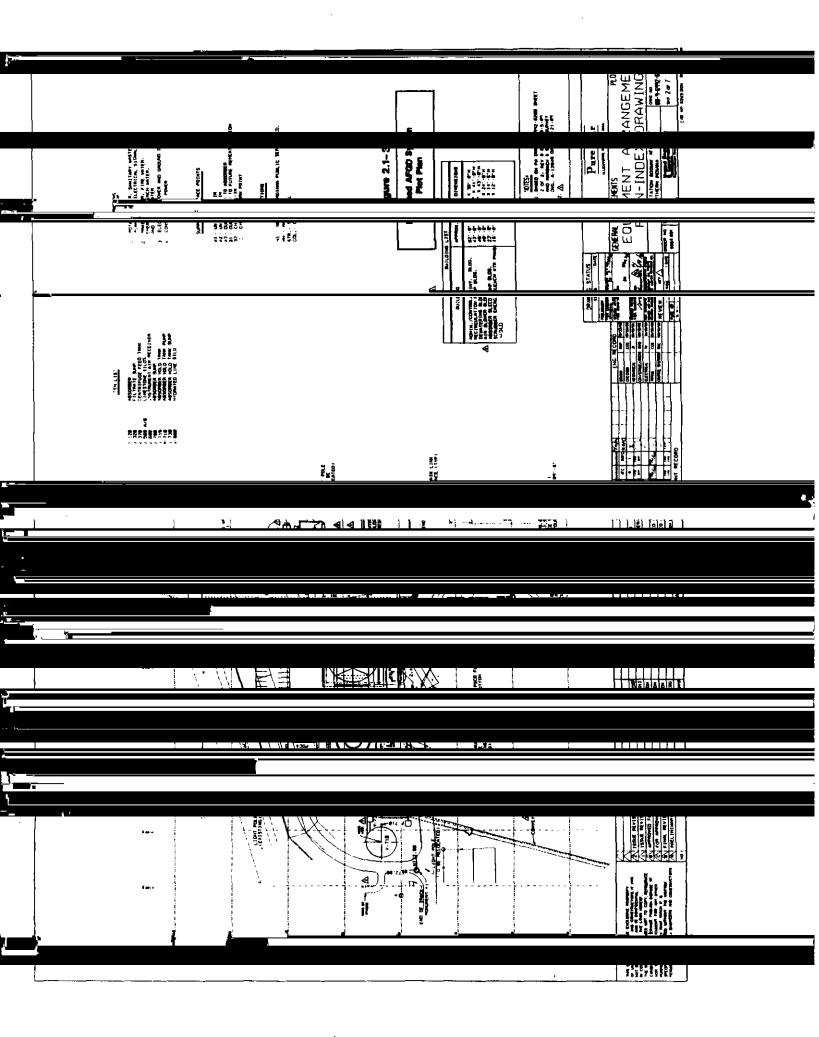

÷

·	The technical feasibility of performing some of the sampling and
	analyses, while still generating reliable data, is in doubt for
	This may be reflected in revisions to the environmental media
	ncliphlo
	interface cabinets throughout the AFGU facility that collect
P <u>-</u>	
	The existing monitoring system consists primarily of coal
1-	
{ * ·	


i.

,


.



	Technology Program Selectees". Subsequent to the issuance of this
·	(compliance monitoring) and class II (supplemental monitoring). Monitoring Classes I and III used in the EMP are equivalent to the two scheme Class II (supplemental monitoring); whereas, Class II in the EMP
	Both Pure Air and Northern Indiana, the project's proponents, will be
-	Integration of Monitoring Activities. contains information on the
1	
4 .	The results of the environmental monitoring will be provided to DOE in quarterly reports with annual summaries and detailed reports. Section Pro Data Margacement and Deports. discussion the data margaret and 1170102195.0 刊9영 Tree
	The fire has been averaged by course? analest team markens. Their course
<u> </u>	
	for air emissions and wastewater discharges. The project is currently
	these permits and their monitoring requirements, if any, will be
; 	A CARL CARL CARL

					-	
i re						
	7			•		
Ĩ						
<u></u>						ļ
	7 COUNTY	8 Norman 10-Mile	Padius 9 BERRIEN COUNTY		1 Grand B	1
		A			Dunelang Beach	
						ý
		Ψ				
·	· · · · · · · · · · · · · · · · · · ·					
<u>. </u>	HICAGO	INDIANA DUNES				
	Numeroas]
• •						
		.				
1444 • •					-trigonal	7
					-trigenese	
					l'etrigeneral	Į
					A:A	
					A:A	
					A:	

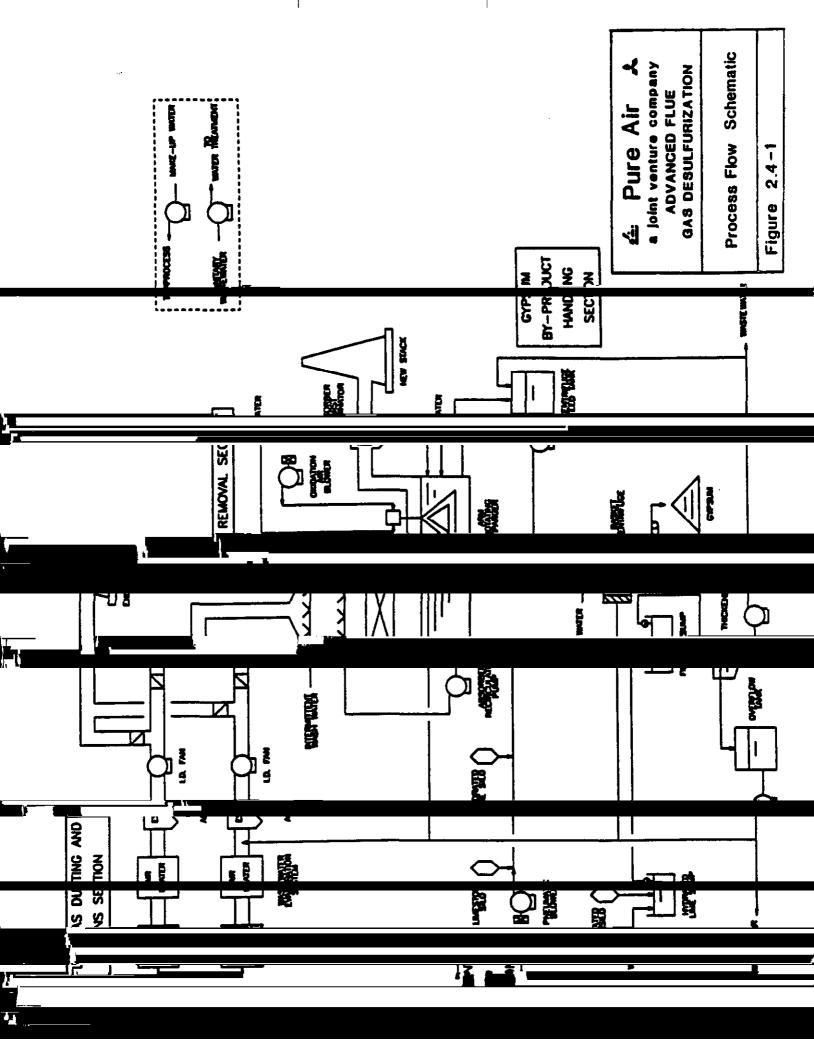
2.2 PROJECT PHASES

.

i

l

· · · · · · · · · · · · · · · · · · ·	will comprise the demonstration period of the project; whereas, the
1 25.	<u>-fegus coincrily or arvinorrantal kaseline or characterization</u>
	monitoring data that will be provided to DOE will be collected during the 3-year demonstration phase of the project.
2.3	PROJECT SCHEDULE
2-	A proliminary evenall project cohedule is as fallows.
]. Last quarter 1988 through third quarter 1992 - Phase 1 Design and Permitting: <u>Includes_development_of_Environmental_Information</u>
	Volume (EIV) numentervoironnervoironnervoironnoratossessiment) ((EA\$1690ever)enpring neestight) (r-53.7633-35.5 data, process engineering, detail engineering, equipment
	and development of the EMPU and EMP.
) 	Construction and Start-up. Includes providing construction wildebild credified eviation for the forci it is
	3. Third quarter 1992 through third quarter 1995 - Phase 3 Demonstration Operation: Includes providing utilities for
	reporting results of operation to the DOE. 4. Third quarter 1995 through 2012 - Phase 4 Commercial Operation:
	Includes compliance monitoring and commercial operation arrangement <u>between Pure Air and Northern Indiana</u> .


5140T

2.4 PROCESS DESCRIPTION

exits through the stack;

 Gypsum By-Product Handling System where the gypsum slurry is reduced to dewatered cake containing 8 to 10 percent moisture by weight.
 Filtrate water is returned to the Absorber System, and a wastewater

2.5 EMISSIONS AND DISCHARGES

wastes generated during both construction and operation. These emissions

discussed in Section 6.2 Compliance Monitoring (Class II Monitoring) in relation to existing Bailly Station permit limits.

2.5.1 ATMOSPHERIC EMISSIONS

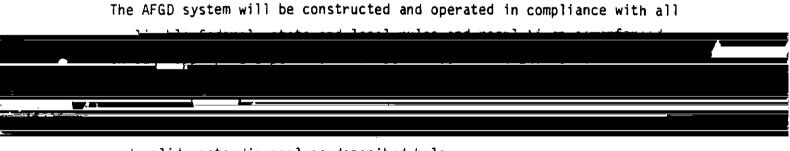
fugitive dust. Operational emissions of SO₂ will be reduced based on the AFGD system's expected performance. NO and

2.5.2 WASTEWATER DISCHARGES

Wastewater generated during construction will consist primarily of stormwater runoff. During operation a portion of the process

hi occas dua euco cumunaecas unhi cumunum bi occas undere naseco
from the AFGD system and domestic wastes will be discharged to
wastewater treatment systems.
not sold or off-specification, (3) normal construction waste
<u>materials (A) splids from the wastewater treatment system and</u>

manufacturer requirements.


1

Gypsum Composition

Parameter	Weight Percent (Dry Basis)		
CaSO ₄ 2H ₂ 0	93.0 min (95.0 expected)		
CaSO3+1/2 H20	2.0 max		
SiO	2.5 max		
Feo03	1.5 max		
$R_2 \bar{0}_3$ (other metal oxides)	3.5 max		
pH (units)	5 to 8		
Free H ₂ 0 (percent)	10 max		

The other metal oxides in the gypsum are expected to consist primarily of oxides of magnesium, sodium, and potassium.

2.6 EMISSIONS AND DISCHARGES CONTROL

and solid waste disposal as described below.

- 75

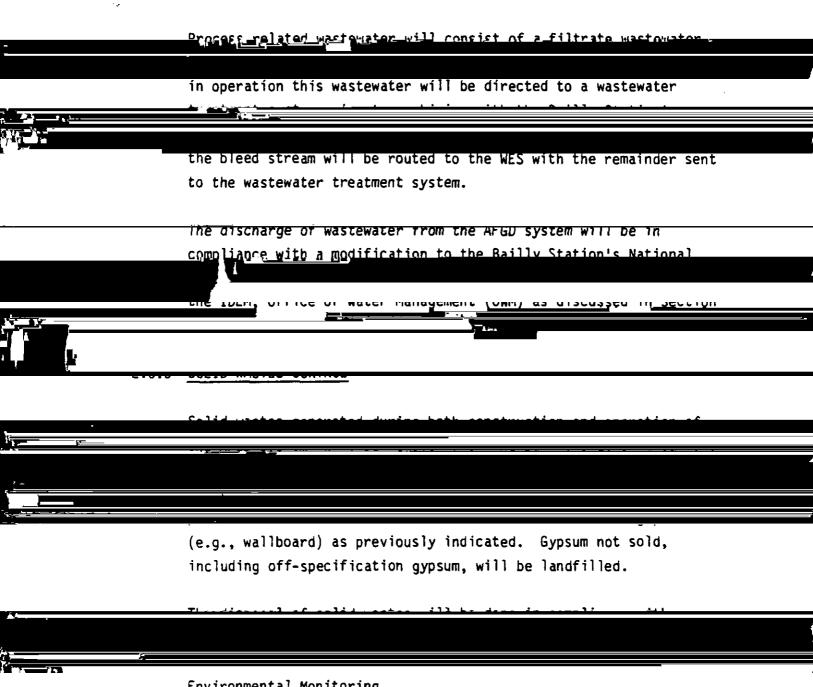
2.6.1 ATMOSPHERIC EMISSIONS CONTROL

·	During construction fugitive dust will be controlled by good	
	and the second	
		-
5 - V 8a		

truck traffic will be controlled by utilizing covered trucks and a weekly paved roadway water flushing program.

Operation of the AFGD system will control SO₂ emissions. NO_{χ} and particulate emissions will be essentially the same as those currently emitted by the Bailly Station.

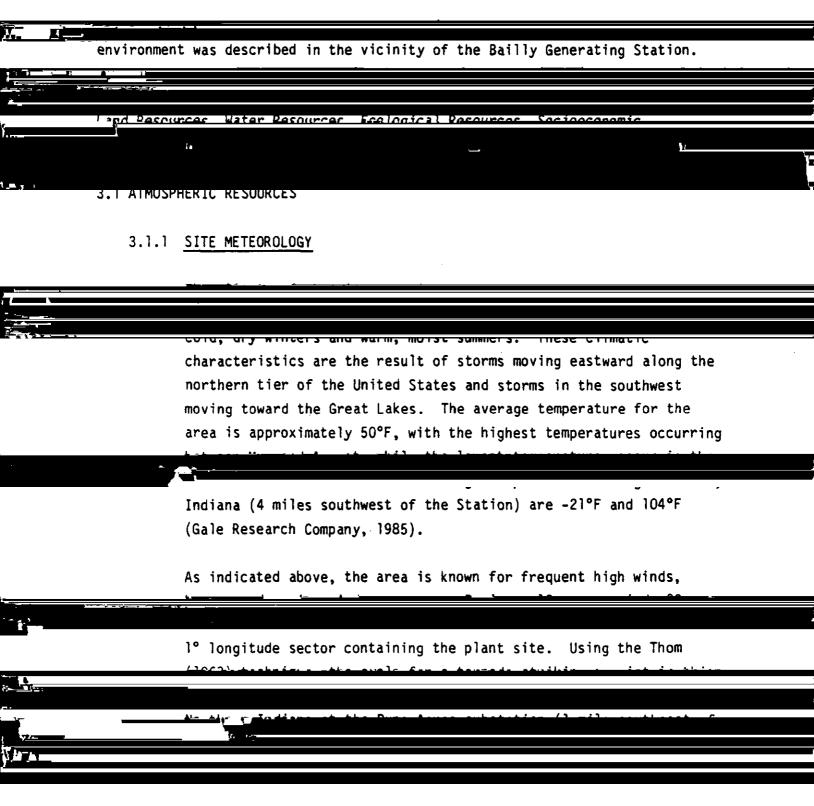
Management (OAM). Information on the Construction Permit is included in Section 6 Environmental Monitoring. The Operating


and will be applied for approximately 60 days before AFGD system start-up.

2.6.2 WASTEWATER DISCHARGES CONTROL

using runoff channels straw bales or other suitable methods. The

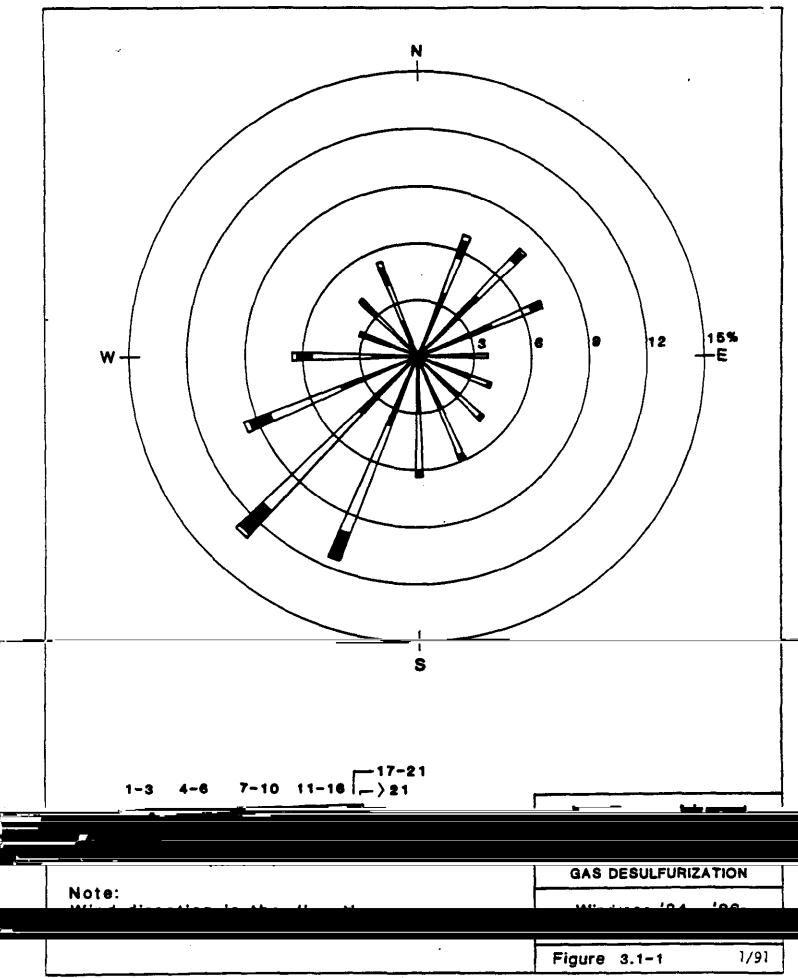
water. The domestic sewage or sanitary wastes will consist of

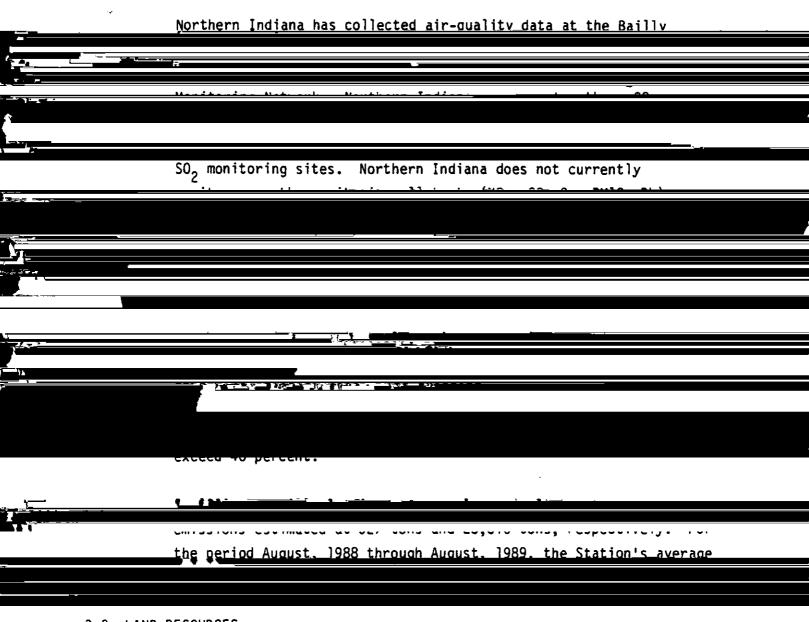

sewage treatment facility.

Environmental Monitoring.

SECTION 3.0

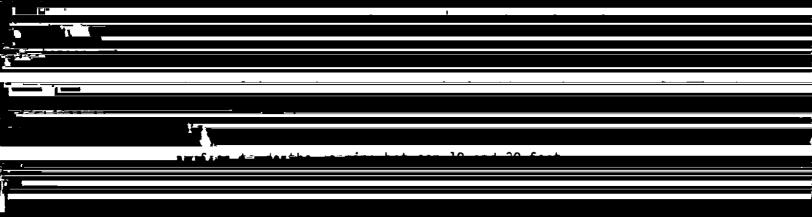
EXISTING ENVIRONMENT


the Bailly Station) are shown in Figure 3.1-1 and indicate that the


There are important climatological differences between dune areas, which include the plant site, and more urban inland areas. The

1	
~	
· · · · · · · · · · · · · · · · · · ·	
	area. The area (force) councy, is presently classified as
	ALLA- EL ANTINE (Pràs- é à-, Yes : h ' Yester E
1	portaoution (002, 102, 00 une 10/ uto tit annutimetter 10 13 01
2	
° 131	

Recently, IDEM conducted a study to develop a control strategy to attain the National Ambient Air Quality Standards (NAAQS) for SO_2 . The result of this study indicated that the NAAQS for SO_2 are being met however, the concentrations predicted were very

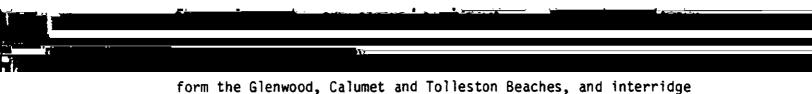

As indicated above, the area is currently designated as "attainment" or unclassifiable for all criteria pollutants except

3.2 LAND RESOURCES

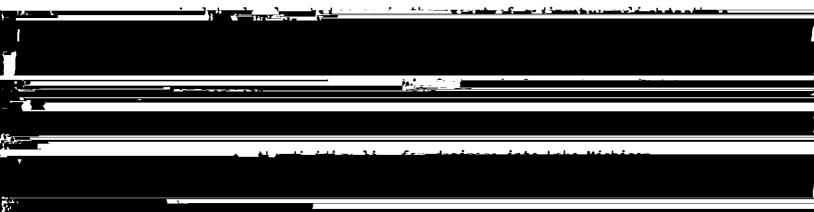
TABLE 3.1-1

1

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT


1988 MONITORING DATA FOR PM10, SO_2 , AND NO_X NEAR BAILLY GENERATING STATION

Annual ^b	Steel	, s 32	50
SO ₂ 3-Hr	Dune Acres 1.4 mi SE	430 ^a	1,300
NOX			<u></u>
	111.		
Footnotes:	^a - Second highest concent ^b - Geometric mean. ^C - Arithmetic mean.	ration.	
Source:	Ritter, K. September 13, 19	89. Indiana Depa	rtment of


The geology at the southern shore of Lake Michigan represents a complex history of glacial, shallow-water coastal, lake, wetland,

The middle unit consists of an assemblage of interbedded till, <u>glacial/lake clav. sand. and gravel.</u> This unit crops out in the region as the take border morane (Figure 5.2-1). The gracial/lake deposits are well developed northward within this unit where it extends under Lake Michigan and the till deposits of the middle

exposed on the surface of the Lake Border Moraine, whereas the core consists of till interbedded sand and gravel.

form the Glenwood, Calumet and Tolleston Beaches, and interridge marshes. This series of the beach/dune complexes began forming between 14,500 and 12,400 years ago in response to rises and falls

	NORTH					SOUTH	
	L s	<u>v</u>			ē	e so	
				i—			
*	ar Jai	Ш.	ţ.	а w	nh.		
f ``							
	- Su	rlicial Aquiter		3 - Car - 04	• • • / /	0.0.0.06/9	
	<u> </u>						
·							ė
₹	F						
				<u>a a anna ann an ann an ann ann ann ann </u>			
· · · · · · · · · · · · · · · · · · ·							; <u>-</u> ;
	-						
	-		<u> </u>				Ĺ.Ţ
					<u> </u>		
					<u> </u>		<u>ب</u> یز
						17 .	
	TILL AND (GLACIAL LAK	E CLAY AND SI			TE FLOW REGIME	ی بنیز
		SLACIAL LAK	E CLAY AND SI			TE FLOW REGIME	
			E CLAY AND SI	LT 2		TE FLOW REGIME	

ORNL-DWG 89M-16837R2

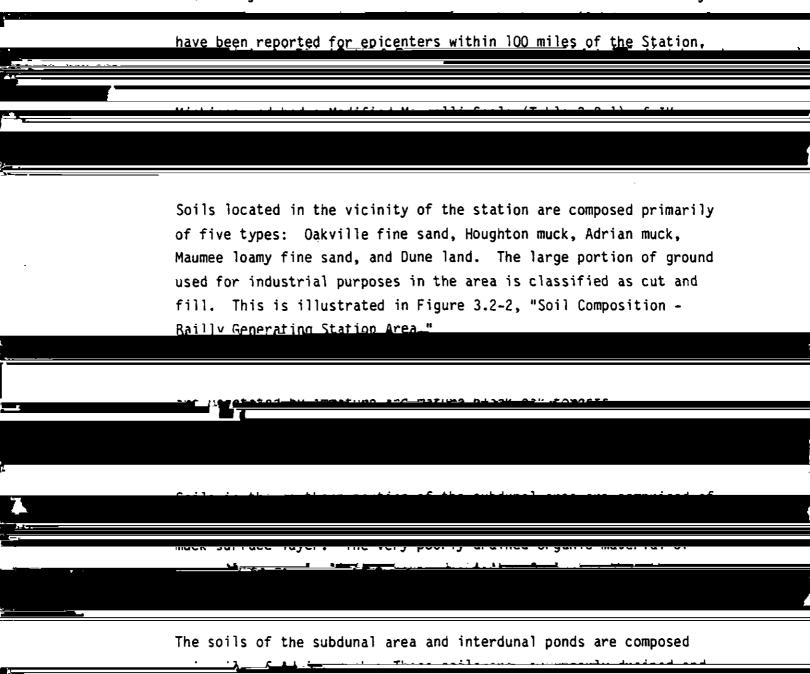

ł

Figure 3.2-1. Cross-section perpendicular to the Lake Michigan shoreline showing geology and groundwater movement near the Bailly Generating Station.

	🚣 Pure Air 📩
-	ADVANGED PLUE

3.2.2 SEISMOLOGY

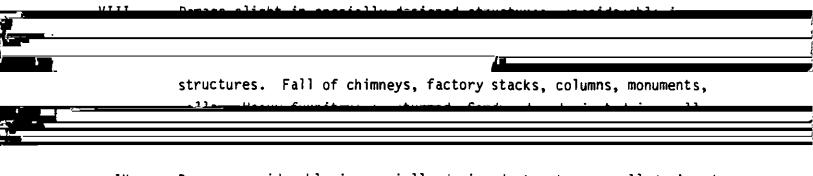
The Bailly Station is located in an area of minor seismic activity

TABLE 3.2-1

1

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

MODIFIED MERCALLI SCALE


I. Not felt except by a few under especially favorable circumstances.

	Ţ_Ţ_	felt anly by a few remains at weat convolution warey floors of
	111.	Felt quite noticeably indoors, especially on upper floors of buildings, but many people do not recognize it as an earthquake.
		truck. Duration estimated.
	T V	During the day felt indoors by many outdoors by few At night
		Atumos, as a concerned of
	۷.	Felt by nearly everyone, many awakened. Some dishes, windows, etc., broken; a few instances of cracked plaster; unstable objects overturned. Disturbance of trees, poles, and other tall objects
X	1.12	
	<u>, 7 T</u>	Annubody runs outdoons. Domago nogligible in buildings of good
		structures; considerable in poorly built or badly designed

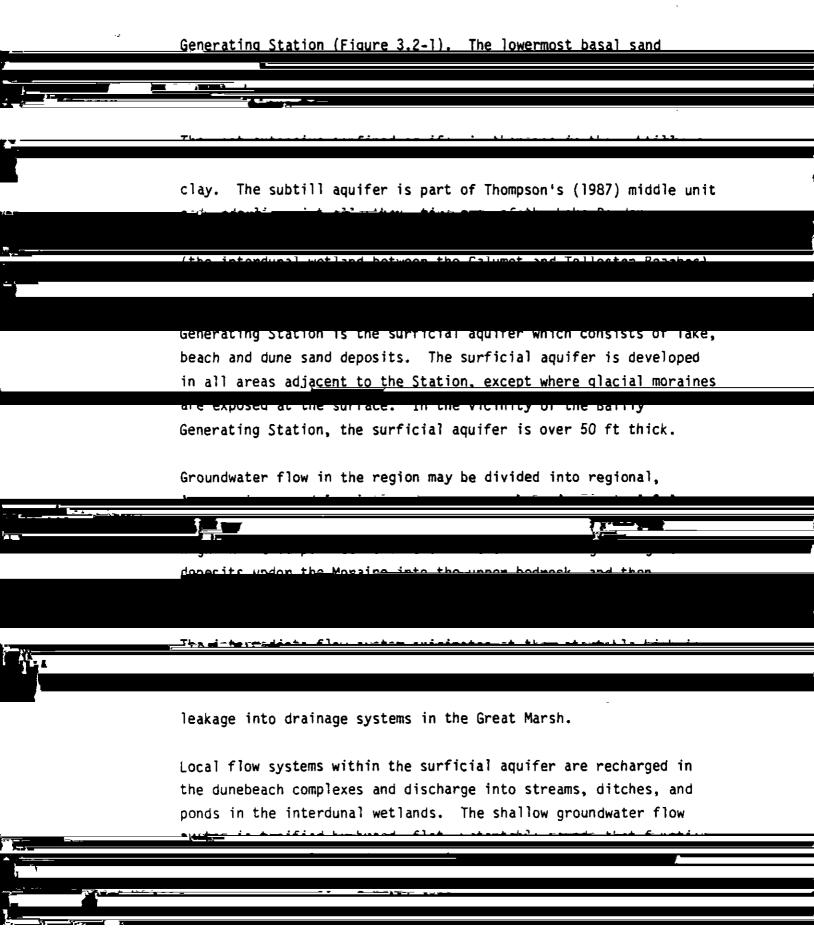
TABLE 3.2-1 (CONTD)

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

MODIFIED MERCALLI SCALE

- IX. Damage considerable in specially designed structures; well-designed frame structures thrown out of plum; great in substantial
- X. Some well-built wooden structures destroyed; many masonry and frame structures destroyed with foundations; ground badly cracked. Rails bent. Landslides considerable from river banks and steep slopes. Shifted sand and mud. Water splashed (slopped) over banks.


XI. Few, if any, (masonry) structures remain standing. Bridges


XII. Damage total. Waves seen on ground surfaces. Lines of sight and level distorted. Objects thrown upward into the air.

	Ad Adrian Muck MIA Martinsville Loam,0-22 Slopes BaA Blount Silt Loam,0-32 Slopes Mm Maumer Loamy Fine Sand Bay - Anon Communication Ministry Communication Communication	Gal - Oakville Fine Sand,12-25t Slopes Oaf - Oakville Fine Sand,25-65t Slopes
liter. Les		
	LAKE MICHIGAN	
	BAILLY STATION	COULLS BOG NATIONAL NATURAL LANUHARK
-		
_		the stores and the set
1	GRAPHIC SCALE	CHICKED SUU
	the state	NIL 12 Walk (K.a.k.)
1		Rua (
ļ		
{		
		s
-		
·		GAS RESULFUBIZATION
-		
L	3-11	Figure 3.2-2 1/91

ì

1

 beach complexes. Shallow groundwater flows northward and southward from these divides and discharges into adjacent low-lying areas and
(Figure 3.2-1). The shallow groundwater flows directly into Lake
From 1967 to 1980, fly-ash produced during operation of the Bailly Generating Station was collected by ESPs and transported as a slurry to a series of unlined settling ponds located on the
evaluation of monitoring wells in the area, Meyer and Tucci (1979)
In late 1979, the Station discontinued use of the easternmost

.

.

	The sublick of the local distance of the subscription of the subscription of the	
-	arsenic, and sciencially relative to backyround revers outside the	
	beekeveved lougle - Caker and Chedlack (1000) and taket the	
- 		
	(confined aquifers) beneath the Station.	
	,, , , , , , , , , , , , , , , , ,	
	within 1-mile of the station, and a total of three wells at a	

T

depth of about 30 ft, approximately 300 ft from the shoreline of

found in groundwater throughout the Bailly Station area. This indicates that a portion of the groundwater originates from the <u>Dercolation of rain and surface water through the sandy soils of</u> the dune forests and through the bogs and peaky areas in the region.

3.3.2 SURFACE WATER

There are a number of springs, streams, rivers, and bogs in the the Indiana Dunes National Lakeshore. Some marshy areas to the east and south of the Bailly Station empty into Lake Michigan via يدرق المردار Burns Ditch to the west of the Station is one ditch of an extensive system of ditches that were constructed to facilitate drainage. introduced into the lake use Burns Ditch for access to their spawning grounds in the Little Calument River. lowest in late winter and early spring. The lake is divided into two basins by two parallel ridges running in an easterly direction THE SHOPE OF THE SOUTHERT DASTH.

 The Lake Michigan beach water zone is the portion of water that extends from shore to a depth of 30 feet. It is a subarea of the inchese zone that comprises 7 concent of the lake surface.	
Over a 5-year study (March, 1974 to December, 1978), lake temperatures ranged from 37.4° to 73.4°F. Ice may cover the	
 Tro moltime and unamine of lake watour appointly comments late	
Lake Michigan has two circulation periods each year, with overturns occurring early winter and early spring in the southern basin.	

1

1

somewhat.

velocities in the upper layer measured at the Station were 40 cm/s. Seiches occur occasionally at the southern end of the lake.

Bailly Generating Station and associated AFGD System are above the

	100-year flood elevation.
	MICHIGAN IN MARTON LOWREN IN AREAMITOR TO DORFILM AR LARAS (UL RA-AL)
ľ	
	resowater nanttats include dramage screams, ponds, bogs, springs and
	Bailly Station. In addition, the current habitats or migratory patterns
	of wildlife will not be disturbed in any way by the proposed construction

3.4.1 TERRESTRIAL

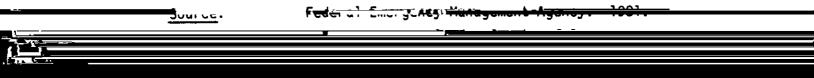
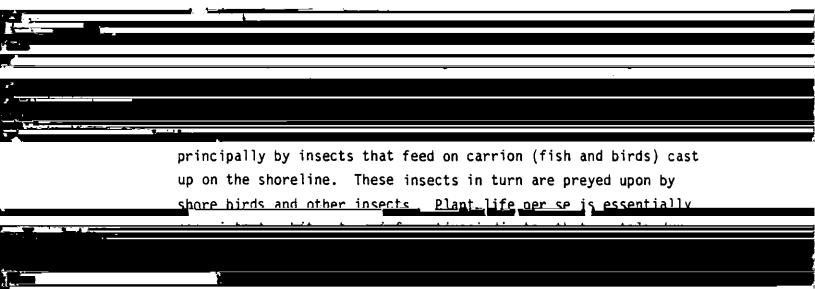

(former farmland) and associated forest components further inland. Each of these areas has its particular floral composition and

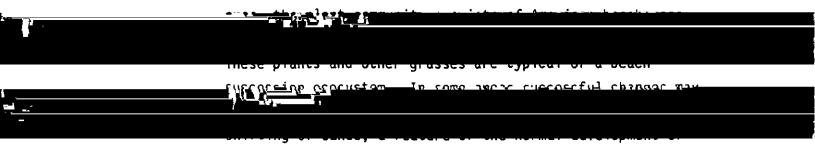
TABLE 3.3-1


PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

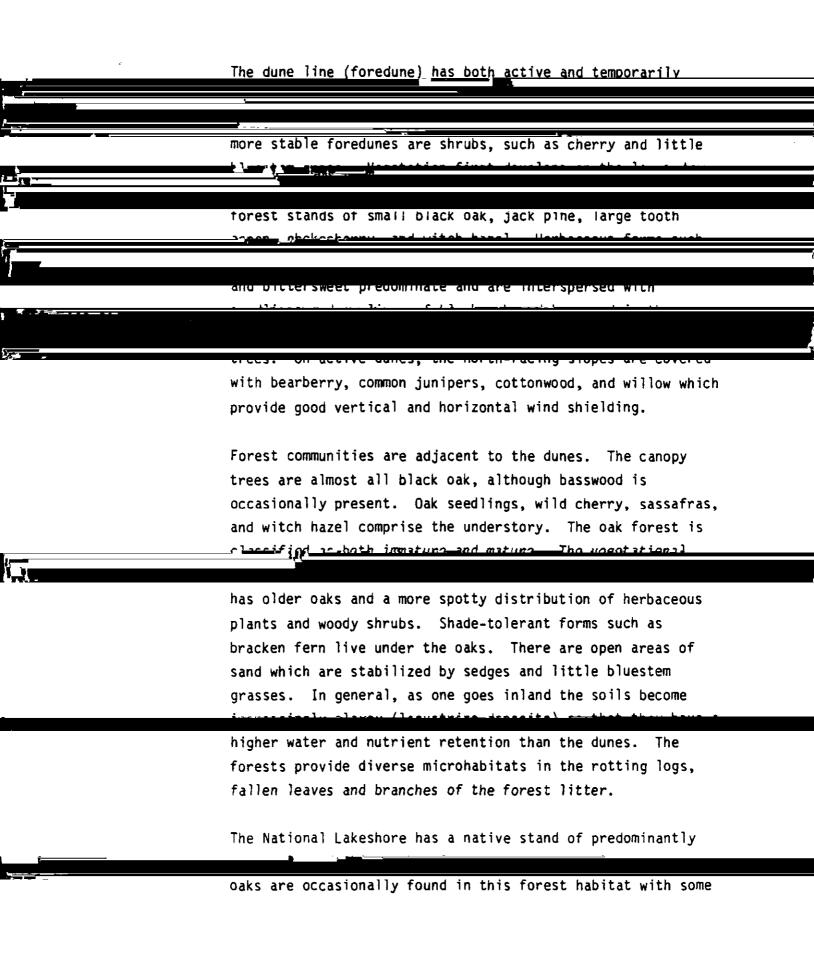
LAKE MICHIGAN FLOOD ELEVATIONS (NATIONAL GEODETIC VERTICAL DATUM - 1929)

10-Year	<u>50-Year</u>	<u>100-Year</u>	<u>500-Year</u>
583.0	<u>58</u> 3,9	<u>584,2</u>	<u>58</u> 4.8

faunal components, although larger animals can be expected to move freely from place to place. The Cowles and Pinhook Bogs, within the National Lakeshore Boundaries, are two intensively studied bogs; they are typical of other bogs and wetlands within the



The area in the Bailly Station where the AFGD system will be constructed contains only a small amount of vegetation on the north-facing slope. Some of this area will be filled during


species.

3.4.1.1 Vegetation

In the vicinity of the Baily Station the mid-beach supports a few hardy pioneer plant species (i.e., coarse plants such as the cocklebur and sea rocket). Immediately adjacent to this

such an ecosystem.

12 additional tree species. Most of the sanlings are

Old field habitats exist within the boundaries of the National Lakeshore and ponds are common in the sand dunes. Old field vegetational types are characteristically mosses, sedges and grasses, cattails and herbs, and maple, cherry and oak seedlings.

	- Carles - C
<u>, 1_1</u>	
<u>•</u>	maya or apricigitum moaa actividitettig cicca or open meser. Usitet
	■ kd _ <u>k</u> d

3.4.1.2 Vertebrates

Vertebrates in the Bailly Generating Station area include

	woodchuck. Scats (animal feces) or footprints of deer,
	raccom and for also have been observed in the area
•	
	Lower vertebrates encountered in the Station area include the
	red backed calamandon groon frog wood frog garter chake
<u> </u>	
۷.	
- F	

summer residents, six are winter residents, and 26 are

	zooplankton, and phytoplankton as described below.	
		ł
-	Ab a la babbana nan	
	Lake Michigan shoreline of the Chicago-Hammond-Gary area, the	
<u>, </u>		
	near the lake.	
	near shore waters of the lake and in the interdunal ponds	
	black duct and pintail), the "diving ducks" (e.g., redhead	
	(migration corridors) of several types of migratory waterfowl, including the "dabbling ducks" (e.g., mallard,	
	Within the vicinity of the Bailly Station are flyways	
	Lakeshore; however, it has been established that the species	
	<u>and and a second a s</u>	
· 2		

1

1

•

TABLE 3.4-1

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

ABUNDANT BIRD SPECIES KNOWN TO NEST IN THE INDIANA DUNES AREA

	Common Name	Common Name
	Rind All Ind An All	
1		
	Maliana	Ked-Eyed Vireo
	•	
	Sora	Ovenbird
	Common Gallinule American Coot	Common Yellowthroat American Redstart
	Killdeer	House Sparrow
	American Woodcock	Bobolink
	-A	
<u> </u>		
	Downy Woodpecker	American Goldfinch
<u></u>	Frakens Vinsbind	
	Eastern Wood Peewee	Song Sparrow
	Horned Lark Tree Swallow	Tufted Titmouse House Wren
	Bank Swallow	Marsh Wren
	Barn Swallow	Gray Catbird
	-	
2		

-2

3.4.2.1 Fish

Fourteen fish species in seven families have been verified in Lake Michigan and several ponds near the

and salmonids comprised the third largest number of

rare or endangered fish species in the aquatic community (Lake Michigan, rivers, bogs, marshes, streams, ponds) in the Bailly Station vicinity. Table 3.4-2 lists the fish species identified in the area.

The Bailly Station's thermal plume in Lake Michigan

yellow perch, bluegill, and large mouth bass. Several species of minnows and two species of suckers also have been found in the area. These fish are important as forage for the game species, but are not sought after for sport or food. Five species of importance for sport or food, especially in the spring, are coho salmon, lake trout, steelhead trout, chinook salmon, and alewives. Other fish of marginal importance, such as carp, bullhead, and goldfish, may also appear near the Station.

Three fish species have been found in ponds in the Bailly

most abundant species.

TABLE 3.4-2

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

ISH SPECIES VERIFIED IN THE AQUATIC COMMUNITY

CICILITIC TIQUE

Family Clupeidae Dorosoma cepedianum Alosa pseudoharengus

Family Salmonidae

Oncorhynchus tschawytscha Oncorhynchus kisutch Salmo trutta

Herring Family Gizzard Shad Alewife

Common Maine

Salmon, Trout and Whitefish Family Chinook Salmon Coho (Silver) Salmon Brown Trout

Family Umbridae Umbra limi

Family Cyprindae Cyprinus carpio Notropis hudsonius

<u> Correlation - Los minimum</u>

Family Centrarchidae Leponis cyanellus

Central Mudminnow Minnow Family

Mudminnow Family

(European) Carp Spottail Shiner

Sunfish Family Green Sunfish

Family Percidae

Perch Family

3.4.2.2 Benthic Macroinvertebrates

1

1

		The hard sand bottom and seasonal water temperatures along
-		bottom sediments and have been estimated to comprise
		slightly more than half of the total benthic organisms
		procest for consist on highly collution to levent
		Most of the other species of benthic organisms are of a
		type characteristic of conditions elsewhere in the lake
		and include leeches, fingernail clams, scuds, and midge
		larvae.
<u> </u>		funting a los have been abequired in the faction
		Table 3.4-3 identifies the macroscopic animals native to
_ _		
		surround the Bailly Station site.
	3.4.2.3	Zooplankton
		Traplantar by acture of their twenties (fooding).
£		
		noted that during this study, zooplankton samples were

J.

TABLE	3.4-3
-------	-------

		BAILLY GENERATING STATION ADVANCED FLUE GAS
	· · · · · · · · · · · · · · · · · · ·	
A		
Ĩ	Famil <u>y Name</u>	Common_Name
		V VINISIL NEILE
	Libellulidae	Dragonflies
	Coenagrionidae	Damselflies
	Corixidae	Water Boatmen
	Nepidae	Water Scorpions
	Gerridae	Water Striders
	Mesoveliidae	Water Treaders
	Lymnaeidae	Pond Snails
	Aeschnidae	Dragonflies
	Notonectidae	Backswimmers
	Hebridae	Velvet Water Bugs
	Gyrinidae	Whirligig Beetles
	Hydrophilidae	Water Scavenger Beetles
	Chrysomelidae	Leaf Beetles
	Gammaridae	Scuds
	Hydracanina	Haton Mitor

Water Mites Pouch Snails Leeches Midges

Velitgae	Smaller water Striders
Dytiscidae	Predaceous Diving Beetles
Planorbidae	Orb Snails
Sphaeriidae	Fingernail Clams
Haliplidae	Crawling Water Beetles
<u>Actacidae</u>	Trav Fich_

Frank	ALCONA DE ALCONAL
ASETTURE	
Elmidae	Riffle Beetles
Naucoridae	Creeping Water Bugs
Source:	Krekeler, C.H. <u>, et al. 1981. Exosy</u> stem Stud <u>y of the</u> Indiana Dunes National Lakeshore, Vols. One and Two.

Hydracarina Physidae Hirudinea

Chironomidae

. 2

collected on one day only). Of these, <u>Bosmina</u> longirostris and copepod copepodids were the most abundant

occurring regularly included <u>Cyclops bicuspidatus thomasi</u>, <u>Daphnia retrocurva</u> (lake stations), and Chironomidae larvae (pond stations). Numerical density ranges from 0.44 to 117.79 organisms/liter in the lake and 50.00 to 964.74 organisms/liter in the sampled ponds, an indication of the higher productivity in the ponds. Spatial and temporal statistical differences were detected between groups of zooplankton stations and reflect the changing

77	
	quantitative distribution indicates that these
	microcrustaceans were over three times more abundant
	teretering and a state of the
	Suggest that certain species of zooptankton are either
	seeking out the warmer water of the plume, reproducing
	seeking out the warmer water of the prume, reproducing
	A large portion of the zooplankton found in the thermal
	plume had large infestations of fungus on their bodies.
	This was especially apparent in Eurytemora affinis and
	Danksia moteocurata the most abundant amagnisms in the
- 1	njume did not exhibit and infestations of fundus.
	sometimes occurs in polluted areas such as in southern
	Green Bay.

3.4.2.4 Phytoplankton

Phytoplankton populations in Lake Michigan reflect seasonal changes in available light, temperature, nutrients and predation. Diatoms dominate the lake flora

become briefly dominant in late spring, and green algae

Productivity levels in the lake are very low, particularly as compared to nearby river systems. Productivity levels in the ponds are somewhat higher but still within a low range. A relationship between productivity, biovolume and

ME TURE ARE A CONTRACT A LEADER OF A LEADE

pily copilance on population.

Peridinium sp. are the more abundant dinoflagellates. These forms have been previously reported from Lake Michigan but not in these concentrations. These organisms are especially abundant in the warm water discharge from the Bailly Station.

Blue-green algae (Cyanophyta) are also abundant in the warm water. The major species in this population is <u>Gomphosphaeria lacustris.</u>

Other golden-brown algae and green algae are present in smaller concentrations. <u>Dinobryon</u> sp. is commonly found throughout take Michigan The green algae Scenedocmur

but is found in highest volumes in Burns Ditch. With

that water and related materials from Burns Ditch are drifting eastward into the vicinity of Bailly Station discharge plume.

	and the second second	المنافقين المعيد المعادية	<u> </u>
Are all a star and a star and a star a st			

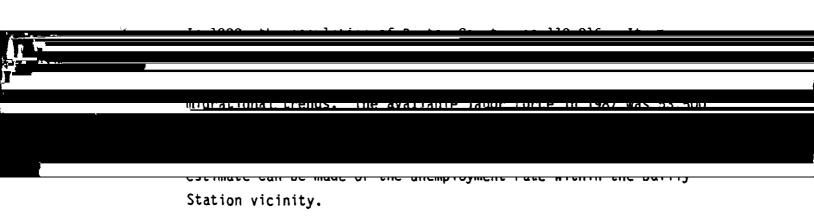
are found in the lake in normal and unpolluted situations. <u>Cladophora glomerata</u> and <u>Lyngbya dignetti</u>,

the first and second most common forms encountered near the Bailly Station. Although <u>Cladophora</u> is normally observed in shoreline habitats of Lake Michigan, it should be noted that its growth is responsive to temperature and nutrient concentration. Under conditions of accelerated growth this species has become a nuisance since it can slough off of its substrate, wash ashore, and decompose, producing foul odors. The attached algae harbors several

3.5 SOCIOECONOMIC RESOURCES

3.5.1 POPULATION

Northern Indian property. Portage is the largest city in the


5-mile vicinity, with a population in 1980 of 27,409.

PURE AIR, NORTHERN INDIANA

POPULATION DATA FOR INCORPORATED COMMUNITIES A A Milles/Direction Census Community From Site 1970 1980 % Change					
Miles/DirectioncensusCommunityFrom Site19701980% Change		POPULATION DATA FO			
Community From Site 1970 1980 % Change					
	Community	From Site	<u>1970</u>		% Change
Dune Acres 2.0 ENE 301 291 -3.3	Dune Acres	2.0 ENE	301	291	-3.3
			•		

Northwestern Indiana Regional Planning Commission. 1987. County Profile: Porter County.

. 2

J.2 L.₩9 J52

3.5.2.1 Regional

The Bethlehem Steel Corporation, Burns Harbor complex borders the site on the west and south perimeter. The

1 - the provide the second of the second second second

Within 2 miles of the Bailly Station there is very little permanent residential population because of the wide use of the land for purposes other than housing. A windshield survey of the Lakeshore area (January 1989) revealed a moderate amount of residential construction underway.

Station, however, almost no new homes or condominia were observed under construction.

3.5.2.2 Industrial

	scree of land The Station's land use is related to
	equipment, a coal storage area and associated facilities,
	y sate when me do and trank for it is and sarbier.
-	
	which serves as a buffer between the Station and the
	National Lakeshore.
	The area around the site, and in particular the area to
<u>1</u> ,	
	chicago, all of which are centers of neavy industry,
	particularly the steel manufacturing industry. Besides
	the steel industry, construction companies and firms
	_producing_fabricated_metal_products_as_well_as_petroleum
· •	

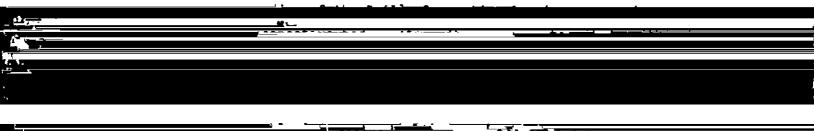
3.5.2.3 Agricultural

Very little of the land north of U.S. Route 12 is either suitable or used for agriculture. To the south of the Indiana Toll Road, the land in Porter, Lake and LaPorte

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS

MAJOR MANUFACTURING ACTIVITY WITHIN A 5-MILE RADIUS OF THE BAILLY GENERATING STATION ^a

City	Miles/Direction From Site	Industry	Product	No. of Employees
Chesterton	1/SE	Bethlehem Steel (Burns Harbor)	Steel mill	6,200
Chesterton	4.5/SE	Luria Brothers	Scrap metal "processing	122
Chesterton	4.57SE	Manley Brotners	stone, clay, glass products	125
Portage	4.5/SSW	Bethlehem Steel	Steel mill	6,000
Portage	4.5/SSW	The Levy Co.	Stone, clay, glass products	300
<u> </u>		M	Charles Constant	100
Portage	4.5/SSW	National Steel	Stee] Mill.) ZOQ


Footnote: ^a - Major manufacturers include those industries with 100 or more employees.

3.5.3 PUBLIC SERVICES

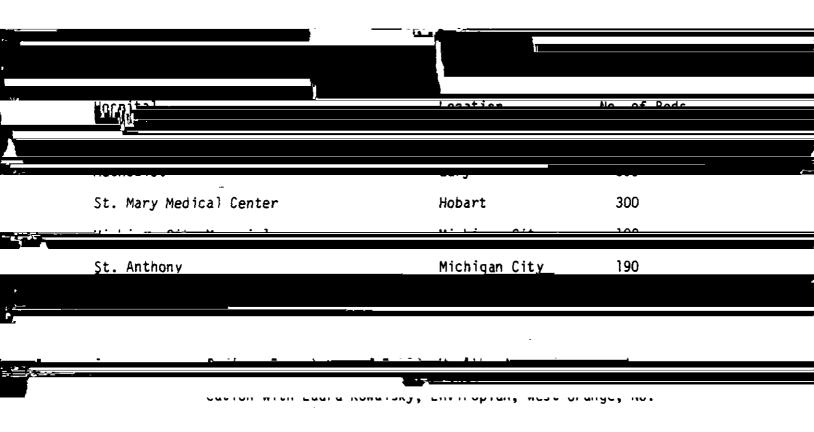
3.5.3.1

<u>Chools Hospitals and Nursing Homo</u>

Table 3.5-3 lists the six hospitals within a 12-mile

schools are covered by these data. Day care centers and pre-school facilities are not required to be monitored by the Indiana Department of Education, so no enrollment or location information is available.

Table 3.5-5 indicates the nursing homes and number of beds in the station area.


The Bailly Station is located in an area where access to transportation facilities is readily available. The two-lane U.S. Route 12 borders the Station boundary on the south as does the Chicago South Shore & South Bend Railroad (CSS&SB). A six-lane segment of an interstate highway, I-94, is located about 4 miles south of the

Station is located on the edge of Lake Michigan, it is possible to reach it by way of the lake. Figure 3.5-1

station. Northern Indiana has a relatively high density

1

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

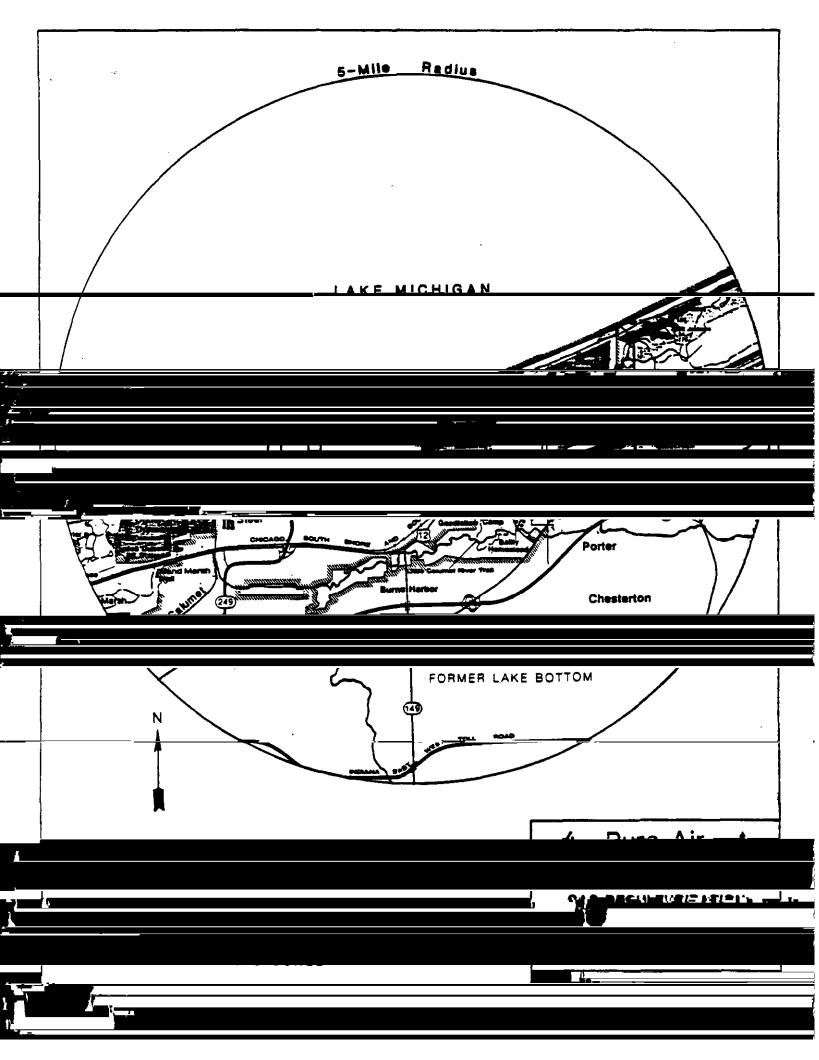
PUBLIC SCHOOL ENROLLMENT FOR COMMUNITIES WITHIN A 12-MILE RADIUS OF THE BAILLY GENERATING STATION

	Community	No. of Schools	1988 Pupil Enrollment	
<u>//</u>	**	•	· · · · ·	
	Porter	1	- 353	
	Portage	9	8,059	
	Hebron	3	1,425	
	Valparaiso	19	8,737	٠

 £	<u> </u>	<u> </u>	<u> </u>	
				6

ي .

.


ļ

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

NURSING HOMES AND BED TOTALS WITHIN A 12-MILE RADIUS OF THE BAILLY GENERATING STATION

	Community	No. of Nursing Homes	Total Beds
T	Chesterton		100
1	-	- e • <u>e · · · · · · · · · · · · · · · · · · </u>	
-			

÷

in 1988 include Conrail and CSX. Direct commuter passenger service to the station entrance is available via

Several principal highways pass within 10 miles of the Station, including Interstate Highways 80, 90 and 94, 20, 12 and 6, all of which run north-south through Gary. U.S.

dinactly talls Pouta 12 At procent ILS Pouta 12

(NPS) is in progress to determine the feasibility of

truck traffic along the highway by the Bailly-Bethlehem Steel sites. Results of the study are expected sometime in 1991.

inere are no scale-supported instorical sites in rorter

County. On the federal level, the Joseph Bailly Homestead and Cemetery are located within 2 miles of the Bailly Generating Station. The Bailly Homestead is listed in the National Register of Historic Places.

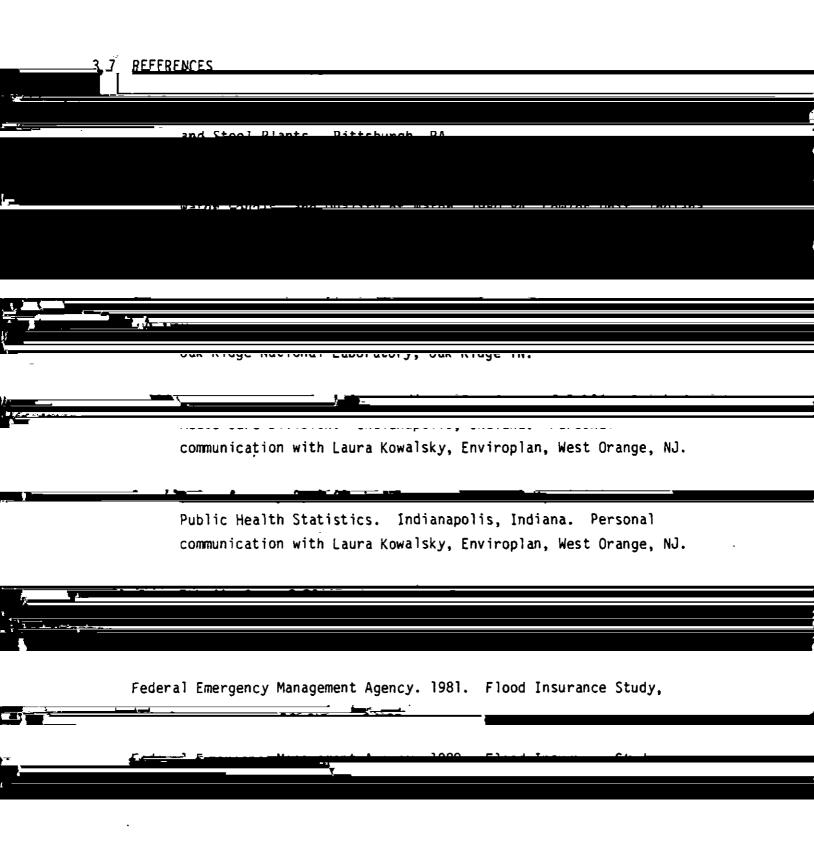
The South Shore Station at Beverly Shores has been nominated to the National Register of Historic Places as the only surviving example of stations from the early period of South Shore history. Northern Indiana owns the property on which the South Shore Station sits; it is

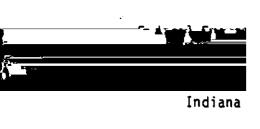
	approximately 10 miles from the Bailly Station. The National Park Service has approved the application; the
	state criteria, it will be submitted to and reviewed by
	Abe National D. 2sternat History Ole -
	There are no known significant deposits or archaeological
	rew miles of the site. Lowles Bog, the closest, lies immediately to the east of the Station boundary. Dunes
~	Park between the towns of bune Acres and beverig shores. Pinhook Bog is situated about 12 miles east of the Station.
3.5.3.4	Recreation
	<u>Furgent the Abr-A-miles of inductorial laborations commind by</u>
	Port of Indiana, most of the 15 miles of lakeshore in
	water is generally shallow with in 50 ft of the shore line
	that line the shore of Burns Ditch and the public harbor at Michigan City.
	lakeshore, boos and marshes. Public Law, 89-761, passed

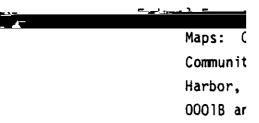
sufficient lands had been acquired to be administered

5173T

effectively as a unit. The Lakeshore was formally established in 1972 and is now administered by the National Park Service.


Fishing in Lake Michigan is a popular recreational pastime. Anglers fish from boats anchored near the end of the Bailly Station circulating water discharge plume where salmon, trout and perch are frequently in abundance. The


prevent anglers from continuing to use this excellent fishing spot.


Inland fishing is very limited. The inland lakes are not stocked by the Department of Natural Resources so local

•	
	raiparaiso area.
	Northern Indiana currently operates two electric generating units at the
	Paily Compasting Station The units are coal fixed and nated at 520 MU
÷ —	
<u></u>	
	the site wherease the patural case is delivered by an underground nineline
	$\frac{1}{2}$
	at an average of 221 million gallons per day (MGD).
	at an average of 221 million gallons per day (MGD).
	at an average of 221 million gallons per day (MGD). Every 2 to 3 years the Station must dredge the area surrounding the

at area beaches.

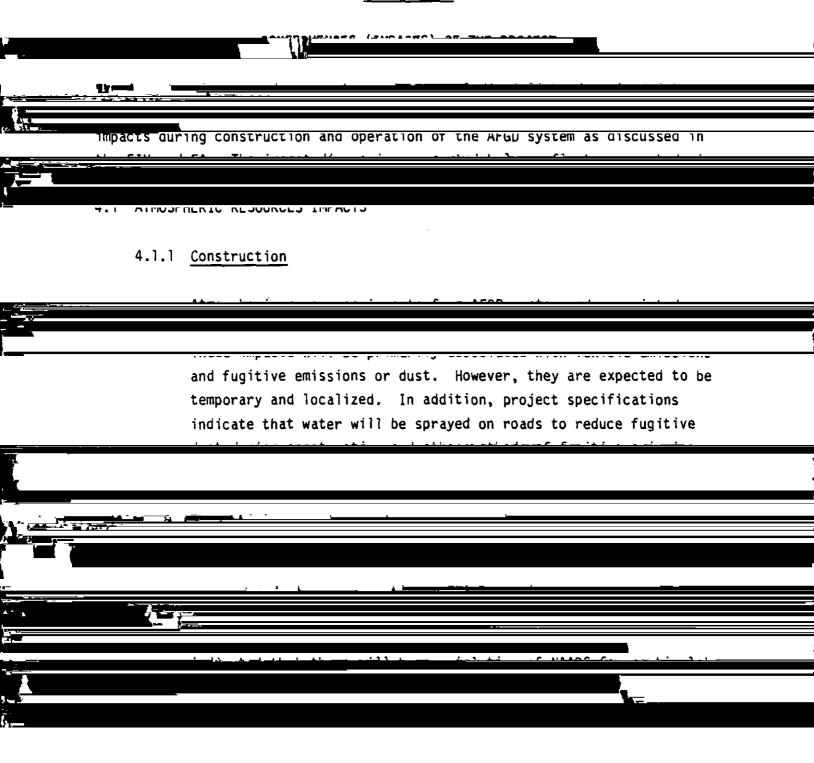
], c	l <u>Baabb</u>	ér 4	الإفسط ويع	<u>kr</u> 1	ረው ት እጅ	<u>N1</u>	na d. Davu	· -1	۱ <u></u>	
	Progra	m 81-01.	Natio	na] Park	Service	. Midwe	st Re	aion.			

Lane, K. January 9, 1989. Indiana Department of Education, Educational Information Systems, Indianapolis, Indiana. Written communication with Laura Kowalsky, Enviroplan, West Orange, NJ.

Inglana Natural Heritade Program. Martin. M. L. January ZU. 1989. Laura Kowalsky, Enviropian, west orange, No. 1000 Manathan Company, Hannora, Indiana, Interest communicación do Lande ne Oak Ridge, National Laboratory, Oak Ridge, TN. Northern Indiana Public Service Company. 1973. Bailly Generating Construction.

Northern Indiana Public Service Company. 1974-1981. Annual Report - Bailly Nuclear-1 Site. Prepared by Texas Instruments Inc., Ecological Services. Dallas, TX.

Rand McNally Company, 1985. Rand McNally Handy Railroad Atlas. Perilogic Devolution Protection 1000 2020. Constru Descille. Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage-TN. Ritter, K. September 13, 1989. Indiana Department of Environmental Manage-TN.		Northern Indiana Public Service Company. 1981. Bailly Generating
Laura Kowaisky, Enviropian, West Orange, NJ. nearth ratifices Division. Intranaports, Intrana. revisional communication with Laura Kowalsky. Enviropian. West Orange, NJ. Rand McNally Company, 1985. Rand McNally Handy Railroad Atlas. prij 1985. Desulation Division 1000 2020. County Destilation Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviropian, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		
communication with Laura Kowalsky, Enviroplan, West Orange, NJ. Rand McNally Company, 1985. Rand McNally Handy Railroad Atlas. Rand McNally Company, 1985. Rand McNally Handy Railroad Atlas. Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		
communication with Laura Kowalsky, Enviroplan, West Orange, NJ. Rand McNally Company, 1985. Rand McNally Handy Railroad Atlas. Rand McNally Company, 1985. Rand McNally Handy Railroad Atlas. Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		
Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		
Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		
Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		
Planning Commission, Census and Statistical Data Center, Highland, Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-	1	Rand McNally Company, 1985, Rand McNally Handy Railroad Atlas.
Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		<u>jed journal ation Duringtion 1000 - 2020, County Duringtion</u>
Indiana. Written communication to Laura Kowalsky, Enviroplan, West Orange, NJ. Ritter, K. September 6, 1989. Indiana Department of Environmental Manage- TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		
TN. Ritter, K. September 13, 1989. Indiana Department of Environ-		Indiana. Written communication to Laura Kowalsky, Enviroplan, West
Ritter, K. September 13, 1989. Indiana Department of Environ-		Ritter, K. September 6, 1989. Indiana Department of Environmental Manage-
•		TN.


÷

Thom, H.C.S. 1963. Tornado Probabilities. Monthly Weather Review 91:730-736.

Thompson, T.A. 1987. Sedimentology, Internal Architecture and Depositional History of the Indiana Dunes National Lakeshore and <u>State Park. Ph.D dissertation</u> Indiana University Bloomington Unpublished.

U.S. Department of Commerce, Bureau of Census. 1982. U.S. Census of Population: 1980 - Number of Inhabitants, Indiana. Washington,

SECTION 4.0

4.1.2 Operation

	During operation of the AFGD system, both overall emissions and ground-level concentrations of SO ₂ will be reduced. When the
	and will be within existing Bailly Station emission permit
	requirements as discussed below. Thus, no additional impact to
	that currently prevailing will be observed. The area is currently the classified as an attainment area with respect to SD. During
	classified as an attainment area with respect to SO ₂ . During
	operation total NO _x emissions will remain unchanged, although
	concentrations of NO _x at ground level may increase as a result
<u>.</u>	
Г.,	
	$\frac{30}{2}$, NO and PM10 even with conservative emission rate
	estimates and without subtracting the contributions of the
	existing stack from the background concentrations.
	Operation of the AFGD system may slightly increase fugitive
	emissions in the area. This would be due to material handling
	(The solid, high area Thic, gjpsam) and associated brack that the
	However, the small increase in fugitive emissions should not cause
	any discomfort to visitors to the National Lakeshore or to
	ce <u>sidents of nearby communities. This will be assured by</u>
	n 192 - 201 - 920 I Standakar and articles and a the second second second second second second second second se
. I	
	shown in Table 4.1-1. As can be seen from this table, the IDEM,
	Oll has a local limits on CO while late cather and examin
	in Section 6.2 Compliance Monitoring (Class II Monitoring).

		LONS	ystem Permit Limits	1.2 NONE	0.22	40		
		Y	- -			ł		
	NDIANA VANCED F	ION P I DECT	Prop			Av		
T.4.4		DESULFUR TON P	Statio Perm mits	يبا <u>مان</u>	5	_		
	RE /	DESU C XSTE	State					
·		BAILLY STATION	Existir		atter	Avera		
			Paramete	502 (1b/ NO _X (1b/	Particul (lb/M	Opacity		

- 2


4.3

	The AFGD system will reduce the SO ₂ emission rate by 90
	Source Performance Standary (MSPS) and Arby System permit level of
	orio in/minitu, respectively. The wet fillescone stuffy dues not
	react with the NO_x so no NO_x is removed in the SO_2 absorber.
	No additional particulate matter is expected to be emitted as a
- -	
	is no net increased in particulate without as ware word before and
	The AFGD system opacity levels are expected to be slightly higher
	than existing levels, in particular during cold weather. The
	moisture content of the stack plume. However, the expected permit
	I THILL OF ALL OPPOPUL ODJC DV WITH ON OP PYCEBABO
	The AFGD system will be available to process all of the flue gas
	from the Bailly Station on a continuous basis. This will be
	accomplished by continuing to pass the Station's flue gas through
	the AFGD system or during start-up or shutdown of the AFGD system,

the Station's flue gas will flow through the electrostatic precipitators and the existing stack.

Land resources or use impacts during the 24-month construction

recreational land area adjacent to the Bailly Station. The National Lakeshore will be shielded from construction activities by the "green belt." The green belt is a 300-foot "L" shaped

owned by Northern Indiana, has been left in its natural state to serve as a buffer zone. The Bethlehem Steel Plant to the south and west should also be unaffected by construction because of its industrial environment.

construction site, proposed for inclusion in the National Register of Historic Places, will not be impacted by construction activity.

4.2.2 Operation

<u>Lond una imposte at the Pailly Station</u> operations with be minimal since operations with be taking place on a heavily industrialized site. rate At TSTACTTEACING ACQUETACIONS DECRECH AUTONETH INCLAIR AND manufacturers of wallboard to allow Northern Indiana to become a Alternatively, the gypsum could be landfilled at an existing permitted disposal site. Although this latter disposal option would consume less than 4 acres of land annually, assuming disposal of 220,000 tons in 20-foot lifts, use of an existing appropriately-permitted landfill would result in minimal County that are appropriately permitted and that have their own approved environmental monitoring programs that they are responsible for. The quantity of fly ash generated at the Bailly Station with the <u>ill bo clichtly bichon than</u> existing operations as a result of the WES in the Unit 8 ductwork. If beneficial uses for the fly ash are not determined, it will be landfilled in an appropriately-approved facility. This

l,

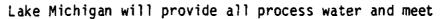
			waste di:	sposal and would have been used for normal Station ash
	ala kanifi			
			tie	
<u>e</u> j	7 -]	-		
	4.3	WATER	RESOURCES	IMPACTS
		4.3.1	Groundwa	
			1 2 1 7	Construction
			4.3.1.1	
				The construction of the AFGD system at the Bailly
<u>1</u>				<u>Geperating Station will not have any effect on the</u>
				during the construction period that are expected to cause any problem with groundwater.
				Any construction-related oil spills will be quickly
				contained by soaking into the soil's surface dressing.
				If necessary, the affected surface dressing will be removed from the site for disposal in an appropriately-
			4.3.1.2	Operation
				generation. However, there will be wastewater from the

Lz,

discharged to the wastewater system at the Bailly Station per modification of the Station's NPDES permit.

Solid wastes (e.g., ash and potentially gypsum) generated from operation of the AFGD system may be put to

			-	
	A STRATE AND A	فيفيونين ويكله	<u> </u>	·
	· · · · · · · · · · · · · · · · · · ·			
<u> </u>				
۴				
	will be stored	in silos prior	to use in the AFGD	svstem.
		•		-

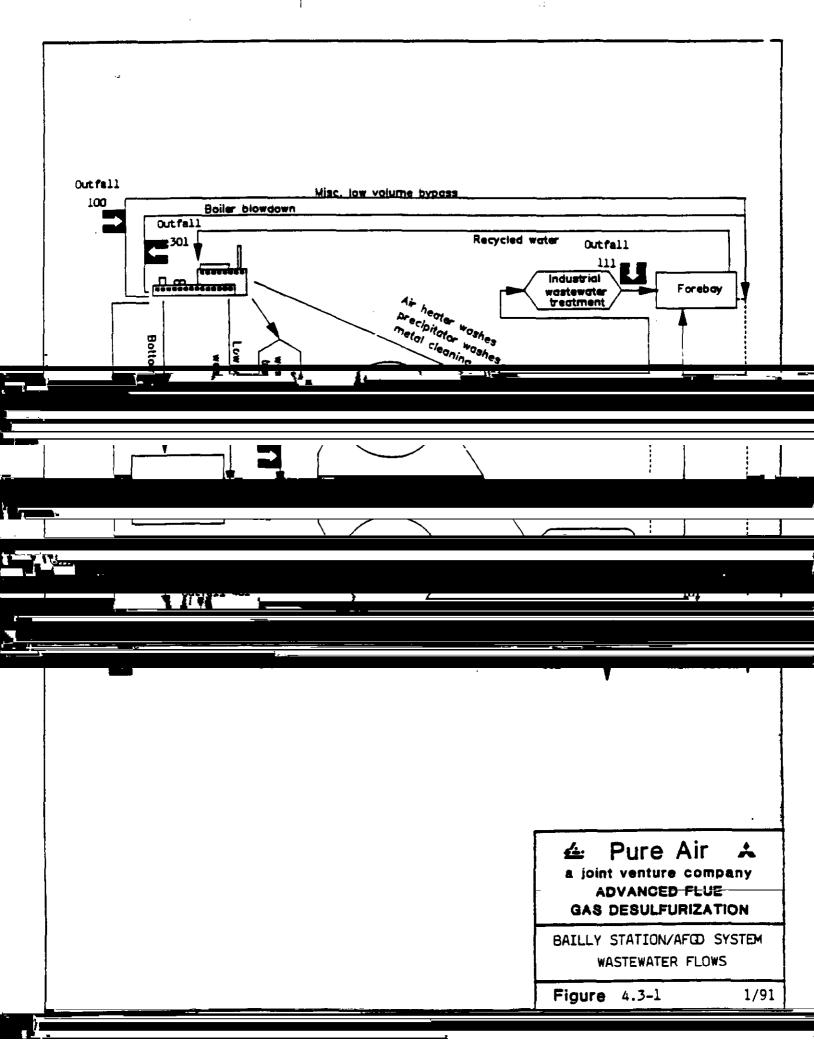

and fly ash will be stored in a silo prior to removal from the Bailly Station. Thus, the impact on groundwater should be minimal.

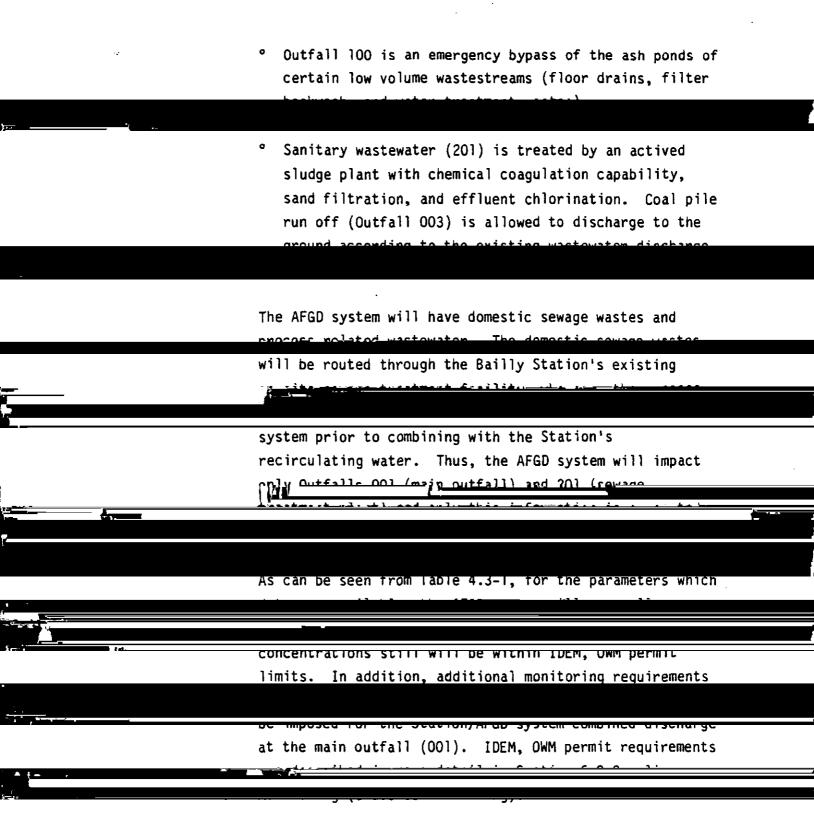
4.3.2 Surface Water

4.3.2.1 Construction

	-		`	_
		 		=
				١.
				,
				s
				Ľ
-				
			-	-
· · · · · · · · · · · · · · · · · · ·	<u>*</u>			_
				_
<u>.</u>				
<u>/</u> , .				-
	A moution of the	 astas that the ACC	0	_
				_
				4
	,			-

4.3.2.2 Operation





with other withdrawals from Lake Michigan, such as the

	f f
· · ·	
_	designed to comply with NPDES permit conditions according
	to IDEM OWM The relevant existing and new discharges
	TA THEM HUM THE PETEVANT BYTETTING AND NEW ATSTRATORS
	in Table 4.3-1.
	The Bailly Station currently has discharge through two
	outfalls to Lake Michigan and several internal outfalls
	-
	as follows and shown on Figure 4.3-1
	 Outfalls 001 and 002 are to Lake Michigan and consist
	of the total plant discharge, which is mostly once
	through condenser cooling water discharged at Outfall
	001. Outfall 002 is an intermittent discharge in
4	
η ······	
	counting water, but generally is not needed.
	in-plant causing the discharge to be intermittent.
	· · · · · ·
	Outfall 301 (boiler blowdown) also contibutes to the
	main Outfall OOl.
_	thence the ash ponds. Other waste streams
	contributing to the ash ponds are the discharge from
<u> </u>	
	recovery, air heater wash, and precipitation on the
	surfaces of the ponds.

TS	Station Disc arge ystem Wastew ter Permit Limits (mg/1 Report 30 (100 15 (20 394 (400 52 (100 1.4 (2 D)	Report 30 (45) - (400 - (2.0 imum indicat 5	ly Station a d to a lower
S S S S S S S S S S S S S S S S S S S	b b b	() ()	it:
ANA ED FLU DT WASTEW HARGES	Combin Wit Propos 221.1 <30 <15 29.0 241.8 24.6 0.4	0.00 2 11 0.4 įf kno	ion fr br bot the ma
4.3-1 HERN 1 ON ADV ION PR MITS 6 IINED 0)) 0) 0) re shq	ge con maximu sted f
AIR, I AIR, I JLFURI FERMI STEM 0	ion Perr Rep Rep Rep Rep Rep Rep Rep Rep Rep Rep	Reg 30 - ratior	the av than t ion is to co
			ב מיב מי
ATT	Da Da Da Da Da Da Da Da Da Da Da Da Da D	ent 8 (9 (⁵ (
BA	er 001 (Main Ou D) Grease	l (Se form dual a	in pa b where the f flow, c TNTC
)f		E 20 E 20 11 11 15 11 15 15 15	

4.4 ECOLOGICAL RESOURCES IMPACTS

1

4.4.1 Construction

Construction activity related to development of the AFGD system is

	<u> </u>
	systems The area proposed for construction is presently free of
Ύ= ,	i.
	wildlife will result from increased human activities. This impact
	may be observed on the less mobile species such as amphibians,
	reptiles and small rodents, and to a lesser degree on avian
76 2	
A.	erosion and secondentation control methods.
4.4.2	Operation
<u>†</u> ,	
	the will to seek new new react none of the species known to occur
<u> </u>	- * Ale
	operation.
	No state or federally listed threatened or endangered plant or
	animal species, or critical habitat for such species, are present

on the Bailly Station. Also, based on the DOE consultation with

expected to be negatively impacted by the proposed project within the site area.

.

The AFGD system will conform to the requirements of the NPDES

aquatic resources are expected.

4.5 SOCIOECONOMIC RESOURCES IMPACTS

4.5.1 Construction

An assessment of the relative innact of THE CONSTRUCTION MORE FOR THE STOCH MITT UT LIC ALGA. consist of up to approximately 400 construction employees at the 1 . .

Experience from previous projects indicates that most of the workers will commute to the job site. This suggests that a number of workers may come from within Porter County and adjacent counties. A permanent work force up to 30 to 35 full-time employees will be required once the AFGD system is operational. This will contribute to an improved employment outlook in Porter County.

		Tes
<u>a</u>		
······································		
		,
	relatively small percentage of employees requiring permanent	
	en and an and a second of the second s	
1		

4.5.1.1 Transportation

Primary access to the proposed construction site will be from U.S. Route 12 and the nearby interstate highway system. The anticipated increase in traffic volumes averaging from 100 to 200 vehicle trips per day will easily be accommodated by the existing transportation network. Vehicles associated with construction of the AFGD system will be requested to enter the Bailly Station <u>property from the west on U.S. Route 12 in order to avoid</u>

Tachinities. This will further minimize impact. The fack of residential and commercial enterprise in the area will further distribution decorrects.

4.5.1.2 Noise

result in Noise

site, where the majority of construction activity will occur, is such that the closest residence is approximately 8,400 ft (1.6 miles) away. At this distance, there will be a significant attenuation in the levels of construction noise at the nearest residential

4.5.1.3 Visual

4.5.2 Operation

The impact on population, employment and housing as a result of operation of the AFGD system will be positive for Porter County and the region surrounding the Bailly Station. Permanent employees of Pure Air will require housing, but will not place a large demand on the real estate market.

4.5.2.1 Transportation

The addition of from 110 to 120 vehicle-trips on a 24-bour bacis will not impact the existing vehicular

will be easily accommodated of The steen sitive as a second and the steen sitive as a second account of the se

4.5.2.2 Noise

Because of the industrial nature of the Bailly Station

net increase in area noise will be imperceptible. The results of an area sound level survey conducted in

Station area vary from approximately 47 to 63 dBA, depending on location. Sound levels in the area as a result of AFGD system operation are expected to increase less than 1 dBA. As indicated, this level is considered

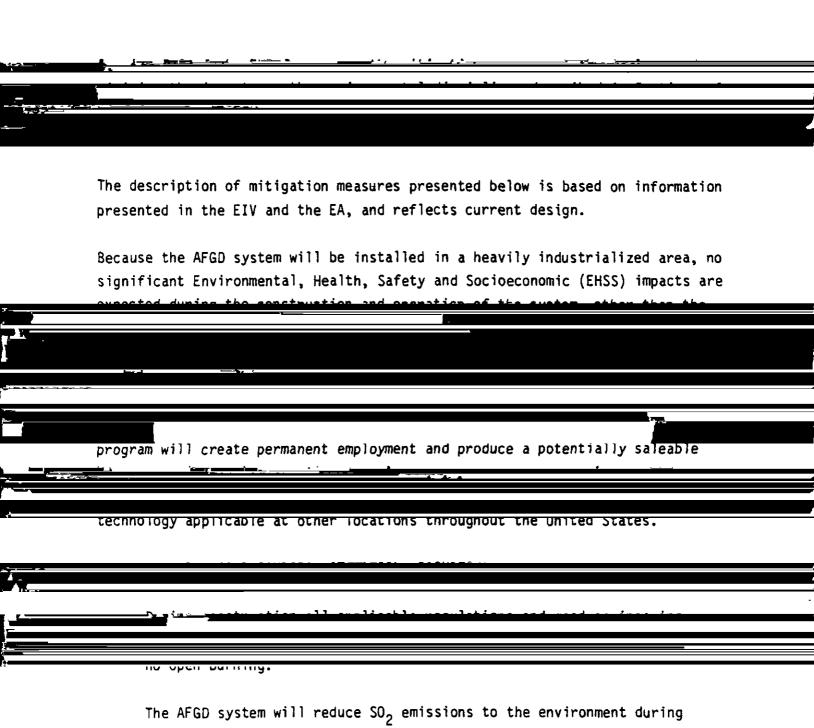
4.5.2.3 Visual

n 17 726 126 and backing the second second

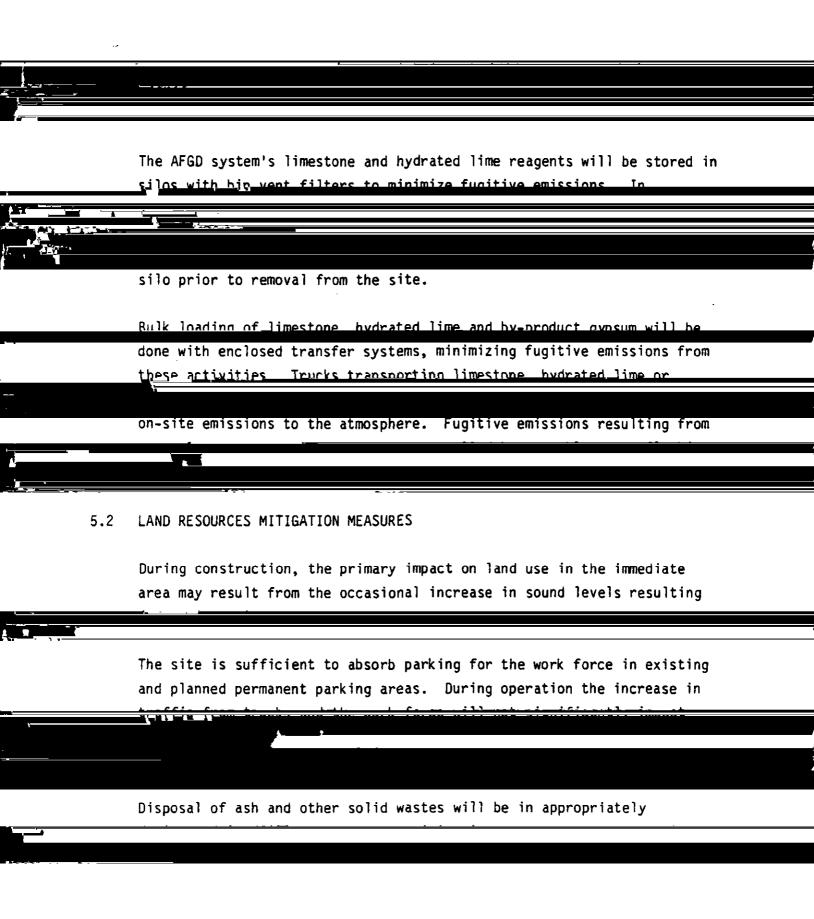
AFGD system will be perceived as visually blending with the other structures on-site at the Bailly Station. The only exception may be the new stack that will be required for operation of the system. The new stack height will be approximately 480 feet or less to ensure a successful and environmentally sound operation. Operation of the

4.6 ENERGY AND MATERIALS RESOURCES IMPACTS

4.6.1 Construction


	During the construction phase of the AFGD system heavy construction equipment as well as construction materials such as steel, cement
	existing barris denciating station. Temporary structures and
	() pipelousis =
	and gypsum will be the by-product from the AFGD system. The raw materials to be consumed and gypsum produced for this project have
·	Estimated Annual Consumption

[603	<u>l. 300.000 tons/vr</u>	


Estimated Annual Production	
Gypsum 220,000 tons/yr	
ξ <u>καταλάτα του αποριο</u> δια διατικά Σουλιου το Αποριο.	
Estimated Average Consumption	
Electrical usage 8.25 MW	
Projected Emergency Consumption	
	_
The second estimates are based as an estimated establish factor.	<u></u>
The average and emergency water and electricity consumption estimates are based on the AFGD system design coal with a 4.51	
limestone will be used as an absorbent. It is inexpérsive and	
	-
Hydrated lime will be used intermittently in the AFGD system to)
occur intrequencijsystemesconares ar ondefevery i Tus92 montation	Tw (to)
And the state of t	,

SECTION 5.0

PROJECT MITIGATION MEASURES

during an upset condition, stack emissions will be redirected to the

Finally, compliance with zoning requirements and the remote location of the AFGD system within a highly industrialized area will mitigate any

stormwater collection system, construction areas will be closed and

Small quantities of office waste materials, resulting from normal operations, will be stored in covered containers or trash bins to minimize potential contamination of surface water. These materials will

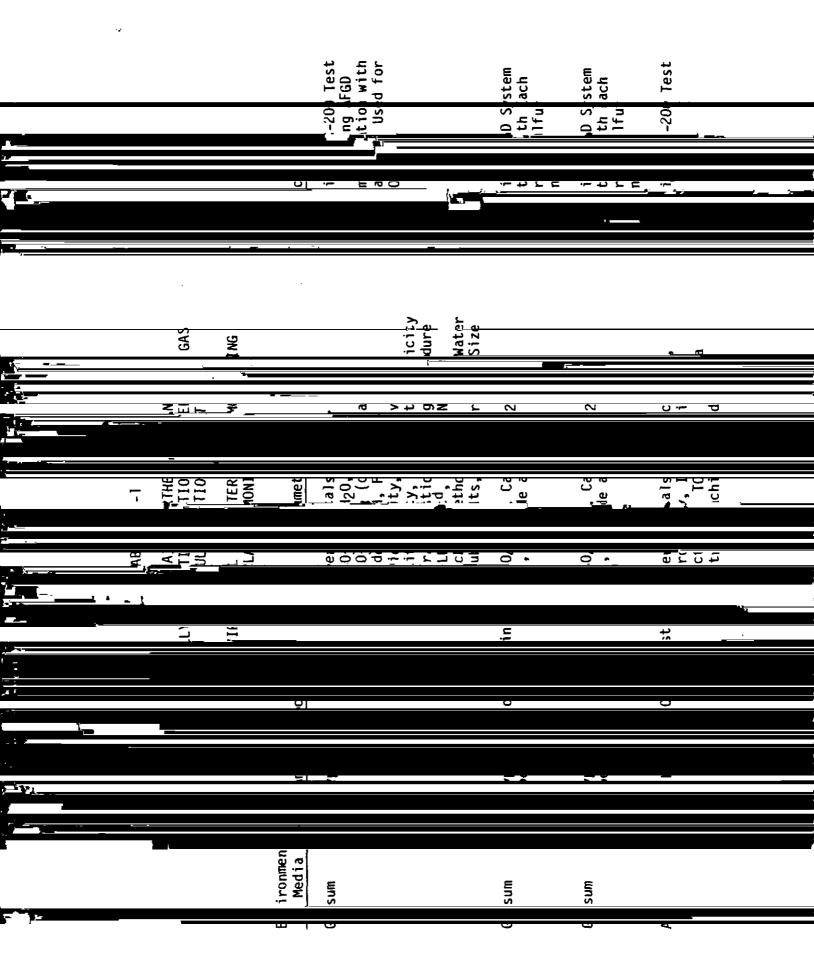
- 1 11 011-21

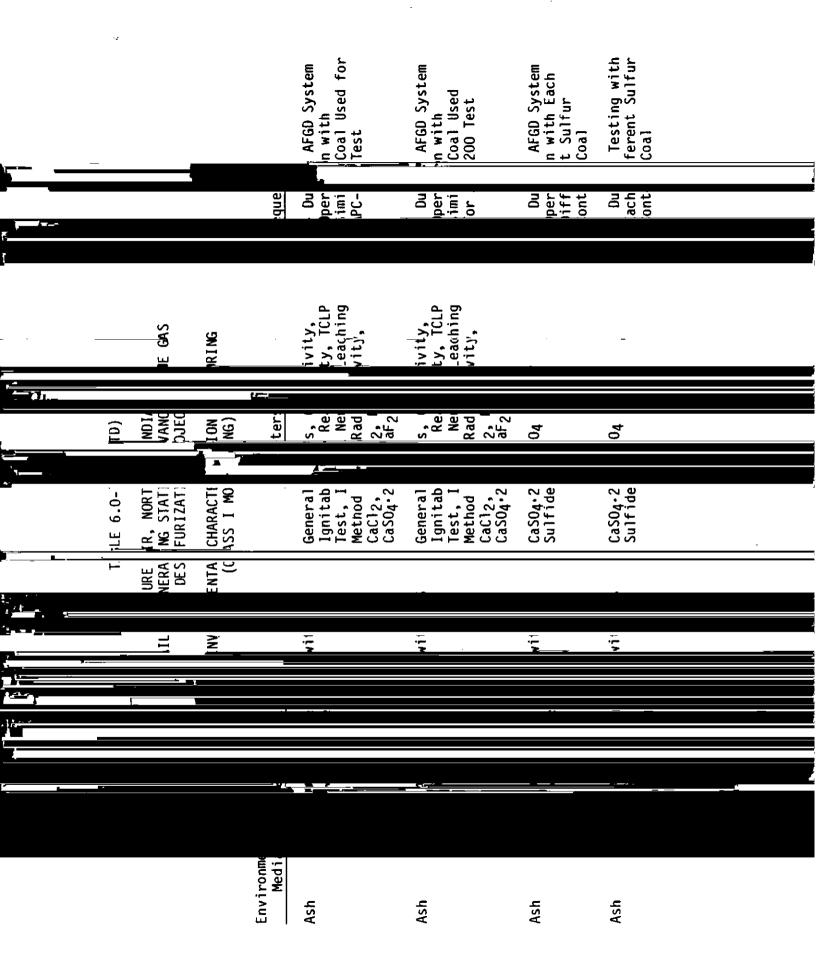
The ash generated from the AFGD system will be placed in an existing storage silo prior to removal from the site for disposal. Any material

Limestone, hydrated lime and gypsum also will be stored in either silos or a building (hydrated lime and gypsum) to prevent run-off to the surrounding area. Any material spilled around these structures will be

	د		
i			
		<u></u>	
in the second			
<u></u>			
	5.5	SOCIOECONOMIC RESOURCES MITIGATION MEASURES	
		No mitigation measures are proposed for socioeconomic impacts, since no	
		significant impacts are projected during construction and operation of	
		the AFGD system. The AFGD system is viewed as a benefit to the area's	
		SUCTOECONOMIC SECTING.	
e.			
		The generation of electrical nower is by nature consumptive of natural	
	_		
, j			
		the SO ₂ in the stack gas will be converted to a saleable by-product.	
		<u> (sa)</u>	

present levels.

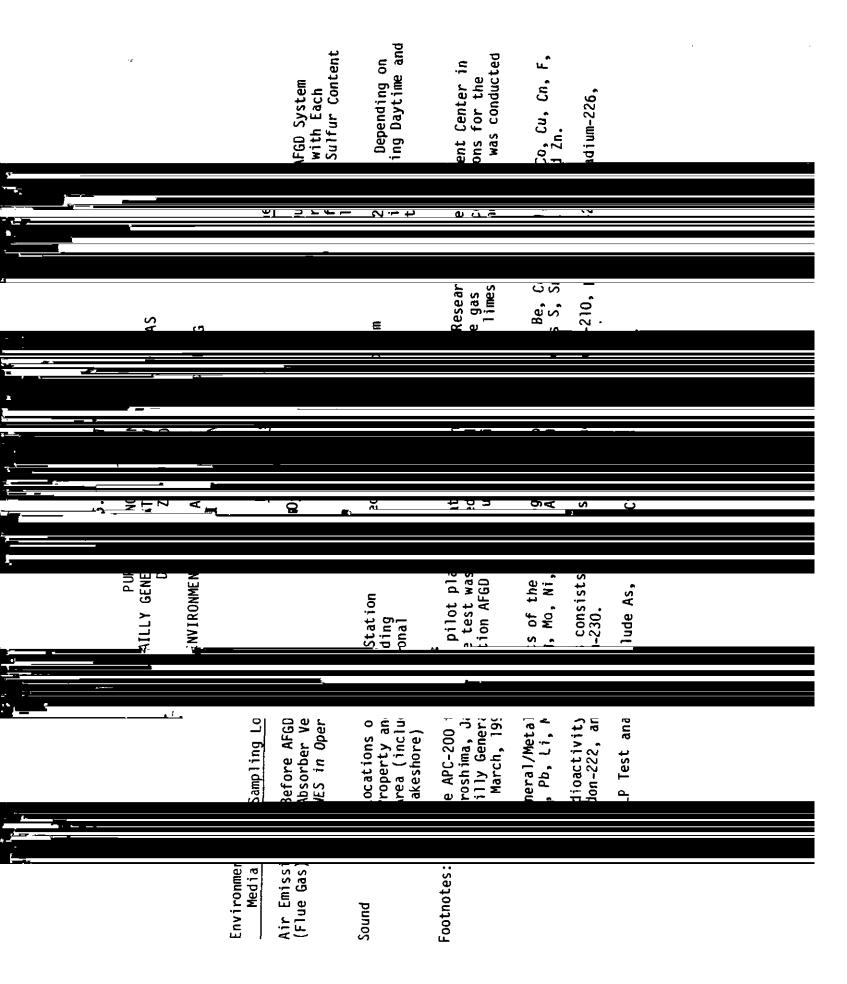

SECTION 6.0


1

ENVIRONMENTAL MONITORING

	The environmental monitoring program for the AFGD system addresses the three classes of monitoring during preconstruction, construction, and operation/demonstration phases of the project. These monitoring activities age briefly decomined below in second terms. More detailed information on
	The three classes of environmental monitoring are as follows:
	 Class I Monitoring, Environmental Baseline or Characterization Monitoring
	Clace L monitorian activition address the environmental
،نـ	
	will include measurements of feedstocks (coal, limestone, hydrated
۶F	lime), operating conditions, information on discharges (air emissions, wastewater, solid waste), ambient environmental mainteen and devector on worker inductorial busience. For the AFGD

	J			st th or		st th sed	Ę
			Frequency	- During AP and l - Dur System Oper Similar Coa APC-200 Tes	- Each Coal Different S Content Dur System Oper	- During AP and l - Dur System Oper Similar Lin for APC-200	- During Af Operation
			Fre	iles, l - D and Sys dry), APC /ityC	1 - E Dif Sys	Metals, l - D Sys Sin for	-
	<u>۲</u> ۸					₩.	al s,
	FLUE	ITOR		imat e, V Ult N, Btu dioa		ícle Gene	ral/
	^						
6.0-1	FHERN IN ION ADVP ION PRO	ERIZATIO DNITORIN	Paran	03, CO3, is-% (Mc Carbon, is-% (S, as rece 1/Metals	03	03, CO3, istribut ctivity	03, CO3, ctivity
	<u></u>						
	LY GENE D	IRONMEN		00 Test	ą		
	BP LY GENE	E IRONMEN	t i or	AP(00 Test	-	j fc	Si
	۲.۲		atior	-	urinç n Per d	ed fc	e Sil
	۲.۲	ب ب	ll atior	-	-	ed fo	
	۲.۲	ب ب		-	-	ed fc	
	8¢ 'r	ب ب		-	-	ed fc	2
	8¢ 'r	ب ب	ital [Hr AP(urinç n Per		2
	8¢ 'r	ب ب		-	-	mestone ed fo	



.	<u> </u>	
		 •
÷		
-		·
· ·		
2	_	

			iuenc	Duri AFGD System berat with Each iffer Sulfur nten Dal	Duri VFGD System Perat With mila al Used Pr AP 00 Test	Duri VFGD System Duri Vith Each Alfer Sulfur Inten Dal		y Co Malysis, inuo 1,1992 and	Duri FGD System erat with al U for APC-200 st	
	IE GAS	RING			ww. TSS, Oil		,		Size hte Matter,	
(a	DIAN	DN MG	ers	·	- bh			tter	nbur Part Part	
-0-9	NORTHE STATIO RIZATIO	ARACTER	Pa	Ifate	id Greas	Ifate		2, acity, rticula	r Metal drocarb stribut x, SO3/	
TAB	URE A NERATI DE SUL	CL/		nt	nt	nt				· · ·
¥	BAILLN	ENVIF	ng Location	ystem Wastewate ent Facility In	ystem Wastewate ent Facility Ef	ystem Wastewater ent Facility Ef		Station Stack	ystem Stack Witl Operation	
			San	AFG Tre	AFĠ Tre	AFG Tre		, Bai	AFG	
;			ironmen Media	tewater	tewater	tewater	ł	Emissic	Emissi	
			μ ⁻ 1	3	3	3	۲	۲.	R	

÷

		÷			stem imilar C-200	.tem ich Content		stem imilar C-200	stem imilar C-200	stem ach Content	
			<u>+</u>	*		<u>10 10</u>	ach				
- <u></u>						л С	лц	, <u> </u>			
-											
				ξI	at	e at	น เช ยิ ยิ	<u>م</u> ۲	5 0	E ro di	
				quenc	Dur peral oal (est	Dur peral iffel ioal	Dur Dera Diffei Contei	Dur Dera Soal Cest	- Dur Dpera Coal Fest	- Dur Dpera Diffe Coal	
		•									
					'sı			,si	s۱,		
l 1											
		GA :	NG		roc on,			on,	roc on,		
, 											
		IAN VCEI ECT	£	rs	urr bist ter			uri)is' ;tei	uri Jis tte		
		٤									
		H 10 10	ER.	4	ile 0	503	50 3	ta Je SO	ta Je u J SO	S03	
	.0-1	NORTHE STATIO IZATIO	RACTER I MON	_	Meta ticle ticul /H2SO	, SC	€	f Meta ticle ticul \$/H2SO	<pre>Meta ticle ticul fticul 3/H2S0</pre>	ي. د	
<u> </u>											
	TAB	URE A VERATI DESUL	ENTAL (CL				S	er	er ; i on		
°4 −-		고로			S		 		<u>Ā</u>		-
- , 			11		it	.		At iı	A 0	.h.	
	<u></u>										
È											
				l Loo	stem at i o	stem Oper	stem atio	AFGD with on	AFGD with	AFGD r Ve Oper	
				ai l	μC	لف لنا	<u>u</u> 5	e ea	υΨ	· •	
				nen i a	\$ S i	ssi	SS	s s a s	SS AS	s s a s	
					<u>y</u>						
				•							

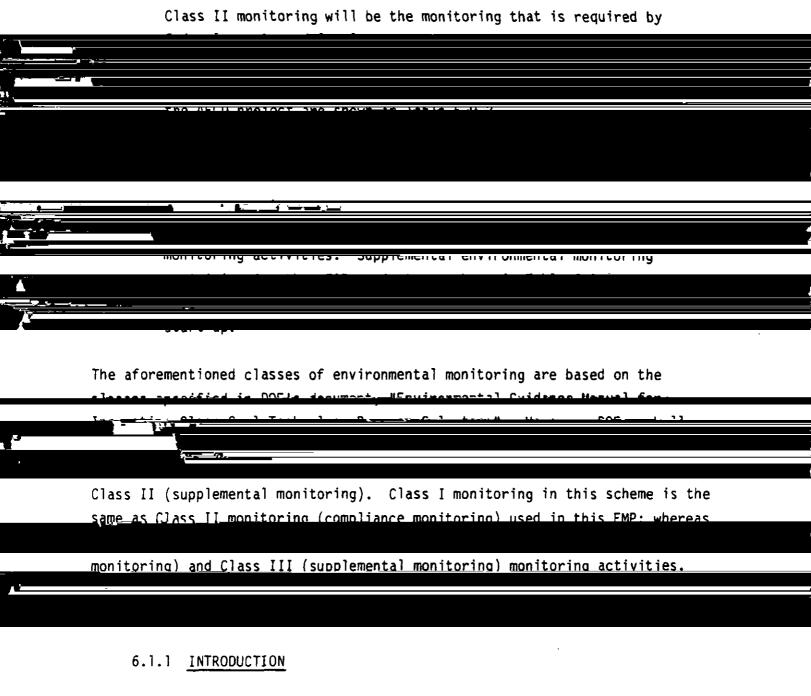
						* *				
1 m 7										
	6.			aci Na,	17 = 5 S	ge	ġ			
				ŭ ř	with the WES, th ceed with monitor ing the base or n parameters indic	tesuits, the pro- her without or wi then be continge	Ag,			
				ion of acetic Ni, Phenols,	ME ME	Con it i	Se,			
				f ac Phen	the with he b mete	be pe	Ni, S			
				i, 1	ith ed g tl ara	er witho then be	ž			
					<u> </u>	<u>د</u>	Mn,		 	
				add M	nolut (ill pi util for ti		Pb			
				Те а 	thout will pi s util for th	edia e ing wi	Cu,			
				·		,	C	n-		
		<u>ق</u>	Ż	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0000					
		200		Te CT						
	CONTD)	N INDIA ADVANC PROJEC	ZATION ORING)		ing is WES. When t sulfur	rrerenc ate env Subsec	Ba,			
	CON	L A A	ZAT OR:	TCLP , 8,	ing WE	ate ate Su	°,			
	<u> </u>	, *	MO	÷		a <u>-</u> 0 4	Sb			
	<u>-</u>	IOR TI TATI ZATI	ACTE I MO	s S	of to of the he tere	ant prol oal ica	ŝ			
j <u>e</u>			_							
	1/1	E RA ESI	TA (C	fo	za er d rs	s1 es on us	10			
л т										
		<u>ل</u> ہ	٨å	- 1	<u>Ā</u> tijā					
·										
				e a S,	on is al ent	_ت ت	COI			
÷						- a r		_		
				Indi incl Sulf	Wher moni envi sulf	Tabl prop WES oper	Air	•		
						-				
					ц ц		<u>д</u> -			
))						
				Footnotes: (Contd)						
				F00 (C0						

6-9

				~		
		Frequencya	Dai Iy	To Be Determined By Regulatory Agendy Requirements	To Be Determined By Regulatory Agenc Requirements	To Be Determined By Regulatory Agency Requirements
FL F GAS	RI		م	on: dered M. Include Dat ivityc, lit d ndiana pd meste	Bgu atory and Method o ide act vity, sy, Reactivi y, itr I Leachi g	gu tory id thod of ud thod of ct rity, ty Reactiv ty, tr. Leaching
TAE TAE IR, I NG S ON AD FURI	IVI ENTAL IIITOR	Param	S, ! h, Bt	o Be ermin Mas ateri Gener etals Orro ty, I eact y, TC eutr eachi	o Be ermine gency quiren ispos 3ut Ma enera 2tals orros Igni CLP T Indi 2thod t	2 Be rmine Jency uirem ispos But M Pros tals, rros y, Ign LP T Indi thod t
GEN CENTRA	MPLI ENVI		¢ S	o Be Mas ener orro eact	o Be gencj ispo: enero orros CLP 1 cLP 1	
		Sampling Location	Bunkered Coal	Gypsum Storage Are	Ash Storage Silo	AFGD System Wastewa Treatment System
Ĵi ≠r		rironmental Media id	l Solid	ะการ		H tment T tment S em Solids

				ANA			• به محمد ا
			ATION A	ED FL	GAS		
			V RONMENTAL MONITOR	ITORI			
ental a	ji j) <u></u>	Pa	ers		duend	
	l ly fa	- -	Tempo Clorine, C Clorinati S (fate, F	re, l ion a hlori de, p	l Residual Frequency of TDS,	s Fro Week ding arame	ily, Two o Monthly he
	ly tm ha	ین ، رو سال ونم	F w, BOD5 R sidual Cl	al Co ne	orm, Total	s Fro V to	k ly
	t s tra		F w. TSS, T 5, Sulfat	and G luori	se, Chloride	s Frc / to	w Times thly
	t a rei		F)w. TSS, F 5, Sulfat	and G luori	se, Chloride, 1	s Fro V to	t hly
sions	٨L	••	Set.) icity, • ticulate	ter		Coal nuous in 19	a lysis, 1992 and
sions	<u>ی د ا</u>	22) icity			snont	

			1d 94	p	۰, hd	iu 226,		a d ol: Na,		
	anba	inuo	inua in _a	he i issu	داع ۲۳, ۴۰۶	um-2,		n of _i n, N _j		
							-			
FLUE GA	SL		er	litions Therefore ropria permits	s, Ba, j, Be, Co , SO4, julfide a	eta, 1 ad-210, p	e, and ng.	t with it the ac Cl. Ci Cn, F.		
								•	· ,- ,	
QW Normality		,2,	23. Tt	by na	5u	SS	С	S OW		
TAI RAT ESU CCL				ill ed	the Hg,	ist:	AS,	choc pr 1 and		
BAILU	Location	Hation 7 and d Inlet FGD Syste	tem Stack	ty of samp bould be co	b, Li, Mg	y analyse nd thoriu	alyses in	ral Leach the anal as S, TD		
	1			. The fre	. Ger Cn, Zn,	. Rac rac	. TCL	. Inc anc S04		ſ
	Environmental Media	Air Emissions	Air Emissions	Footnotes: ^a -	'	С <mark>.</mark>	-p	ย่		


.

۰.

	-2		nd lor GD -upa	ter ect up	
	FLUE GAS	DR I NG	<u>Frequency</u> pectrum 1 - Before 2 - After System Sta	r AFGD system start-up. If the or Winter) when vegetation and i easurements, a second after star t the earliest possible date aft em operations.	
0-3	FRN IND N ADVAL	ENTAL A	tave B.	re and time (F und lev l be do h AFGD	;
TABLE	PURE AIR, NOR BAI LY GENERATING STA DESULFURIZA	UPPLEMENTAL ENVIRG (CLASS III	tion Parameter Baily dBA, Leq, ty nd ea	's w ll be conducted be i no conducted during ely to interfere with ducred. This survey v e that is consistent v	
		-	Location Station Surround (includi Lakeshor	Sound level start-up sur noise are le survey will start-up, at	
			Environmental Media Sound	Footnote:a-	

ł

2. Class II Monitoring, Compliance Monitoring

6.1.2 ENVIRONMENTAL STUDIES

The focus of the baseline environmental studies has been the EIV and EA. As part of the development of the EIV and EA for the AFGD project existing environmental conditions were described for the

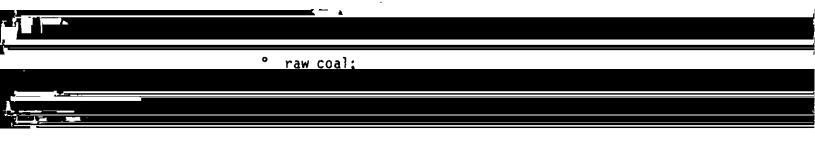
several disciplines described in Section 3.0 Existing Environment.

Based on process and other information, predictions were made on the impact of the AFGD project on the area environment and appropriate mitigation measures were developed. The potential impacts and mitigation measures were described in Section 4.0 Consequences (Impacts) of the Project and Section 5.0 Project a7 Tw (the) Tj0 064937-17. TTD 3 Tid0.02fy1 Tc-0.1212 T Mitigation Measures, respectively.

C.1.3 OPERATING PERFORMANCE TECTO

(Table 6.0-1phaseTestsowill be conducted to identify limitations of the AFGD process and operating parameters that may affect

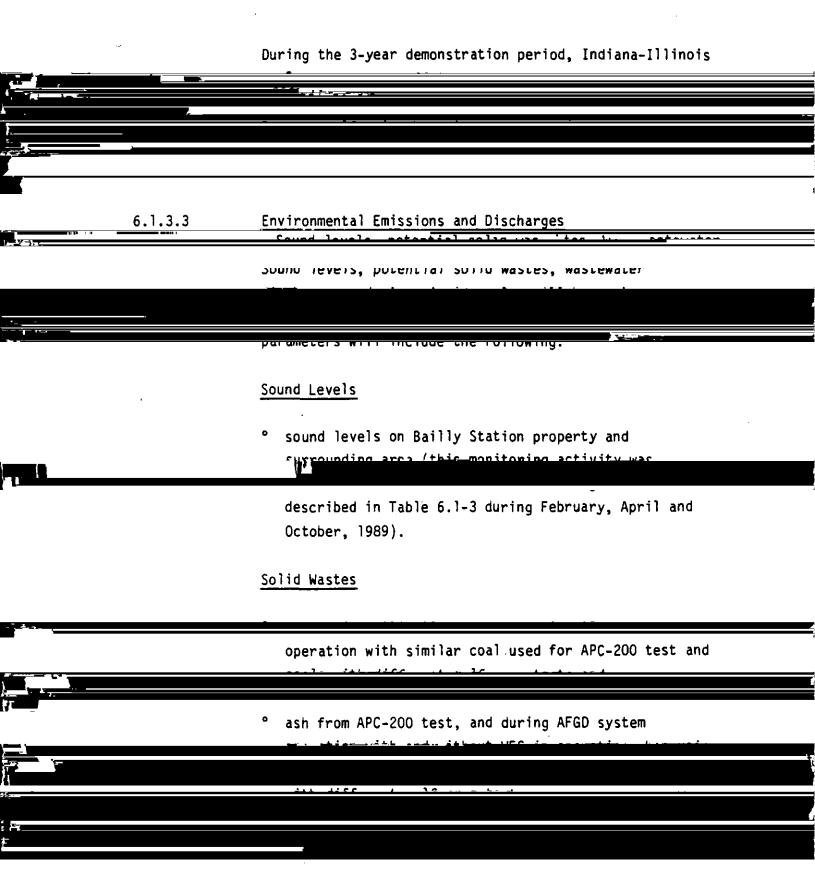
The infermation from these tests will be related to historical as

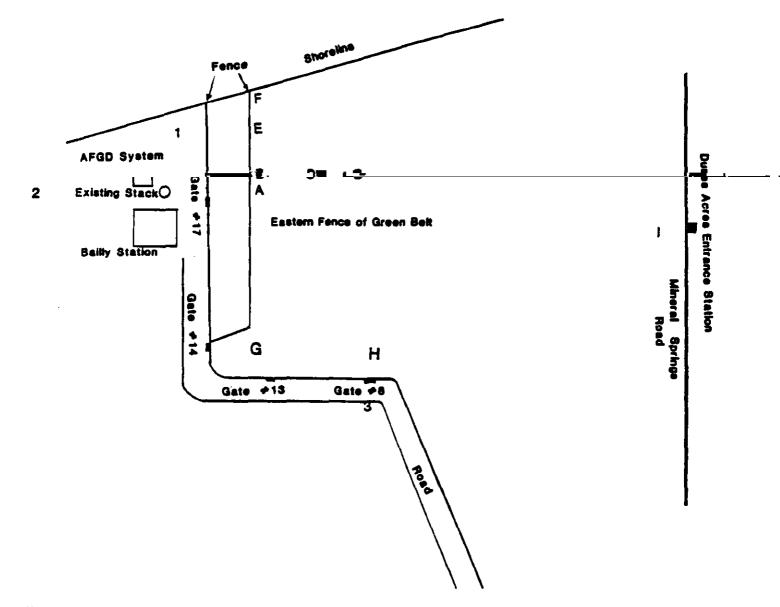

6.1.3.1 Bailly Station Operating Conditions

Several Bailly Station operating conditions will be examined based on existing information. These include primarily those associated with air emissions, wastewater discharges, solid waste disposal, and ESP performance. This information will be compared with information

operations.

	-	
,		system. Air emissions are currently monitored for SO ₂ ,
		tiow, temperature, total residual chlorine, and duration and frequency of chlorination; whereas, at the internal
		monttoring is for flow, boo ₅ , recai confronm and cotar residual chlorine. Additional details are provided on the existing monitoring requirements for air emissions and wastewater discharges in Section 6.2 Compliance Monitoring (Class II Monitoring)
- , .		
Υ 		
L		appropriate data is available during baseline monitoring, it will be incorporated in the monitoring program for
	6.1.3.2	Process Operating Conditions

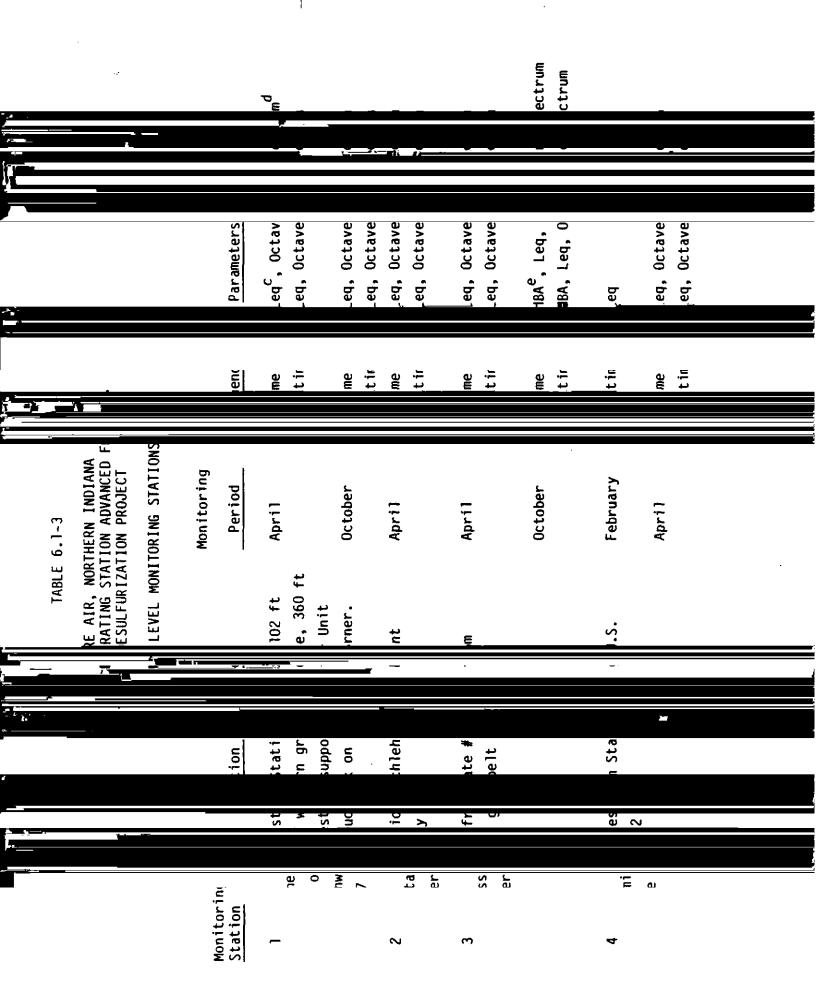

Numerous AFGD operating conditions will be monitored. These will include solid or liquid samples, as appropriate, which will be analyzed for the parameters indicated in Table 6.0-1. The sample media will include



							,				
1 N				1912		19 2	19 2				
			mit on Dat	1, 1		1, 1					
			Ë O		A 1		•				
			Expir		2				-		
			<u>ا</u> ت						: is which ity	1990	
			-1	burned Iral		Stack		sture.	nd limit i ue gas es F, wh opacity	culate year l	
· · · · ·			ion	, bur ural				stu	nd 1 ue es op	cul ye	
				<u> </u>	5 T						
		FACILI	Monit hethod/	ked], 0 a	e	CPA Met	, St	ash an	. start 40% op antil t ss 250 from th iods.	t for ng cal 2."	
. *		FA		Sunked Joal, (Jas a	lione	PA	E	as	10 10 10 10	t 2. 2.	
	Я	07 NTR	6-					sulfu	oot state see Je	s T T	
F figu	FLUE	M, 07 CONTR		ige		ng	2	ns	g boi rom t ods c r rea mptic rage	fies med (year	·
	<u> </u>			•							
3											
1	NOF STA I ZA	XIS OF				d		t c	for ps nut tat sh n)	tio ts du	a de la constante de
	1									-	
			<u>১</u> ম			0	'n	f			
	BAILLY GENER DE	Y SI	Monîtor Frequen	Daily	None	Once ea during years 1 1992c	Cont inu	'zed	exemptions are al During boiler s up to 10 (ten) e entering the el i first. During llowed for up to	ation le fir le per	
	۲LY	BAILLY S FOR (운도	Da	No	du du 92	പ്	u ly	ns a boi ng t Du or u	y St "Th to b	
	BAI	B MITS						re a	ptio ring to teri rst.	aill, ing, est	
			is t			~.	•	es a	exem Du Du Du Du Cup	itor itor er ti	
		BAILLY STA ERMIT LIMITS FOR OPER	Permit Limits	6.0	None	0.22	40 b	amples are analyzed	<pre>"ary exemptions are al wns. During boiler s ed for up to 10 (ten) "ature entering the el occurs first. During is allowed for up to</pre>	isting Bailly Station monitoring, "The fir nother test to be per	
i			ألبيت يتليا								
						ter		I	•	F	
			er	(U)	TU)	Mat		ø	٩	U	
			<u>[_</u>	8	MB	÷ te	સ્	••			
			ame	Ψ.	Ξ.	a U	$\overline{}$	es			
			Parameter	(1b/MMBTU)	(1b/MMBTU)	ticulate Matter /MMBTU)	city (%)	tnotes:			

I

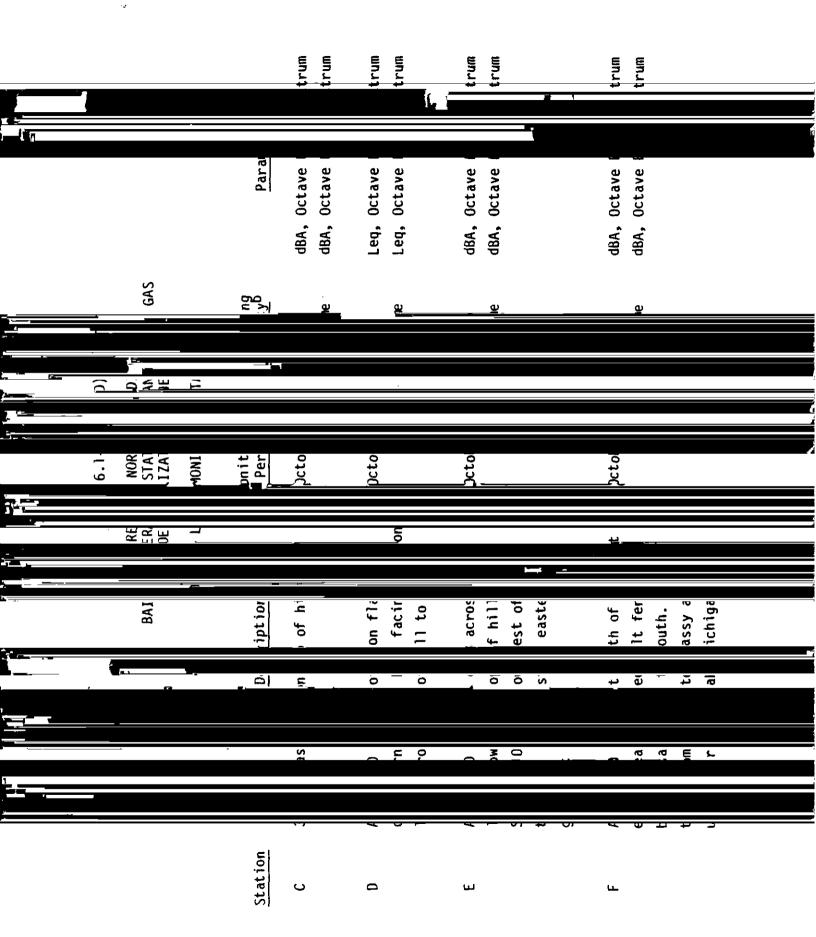
	16	Sample Type	24-Hr Total	Cont inuous	Grab Water	Hrs	Frequency	24-Hr Total	8-Hr Composite	Grab	Grab	ntil midnight March 31,		
SN	ILREMENT: IFICATIO	ment			iarge of Iring Wa	ırt	rt					1, 198		-
, ¹⁻² Ern Indiana Dn Advanced Flue Dn Projęct	ND MONIFORING RE O NPDES PERMIT M	Measu Free	Waily	Jaily	Uuring Dis Chlorine E	nonthly Re	Nonthly Re	beek]v	veek 1 y	veek 1 y	a weekly	fect from Novemb		
			,											
	~ ~) جر،	.,									٤_	·F	
		ہے۔ 										٤_	i i	
	\$			2		-						£		
	\$,			-						t	t. 1 i	
	; <u></u>					- -								
	; <u></u>				th:	רד פֿ ור דין	sque			per			t. 1	
	; <u></u>				<i>h</i> la			rage			hlo	The to 19	t. 1	
	; <u></u>		0-	atus a				<u>u;</u>			hlo	t	t. 1	


T N

<u>Notes</u>:

ł

1. Figure Not to Scale.


	A Duro Air +
Homestead) Are Not Shown on the Figure.	ADVANCED FLUE GAS DESULFURIZATION
	Locations
6-20	Figure 6.1-1 1/91

6-21

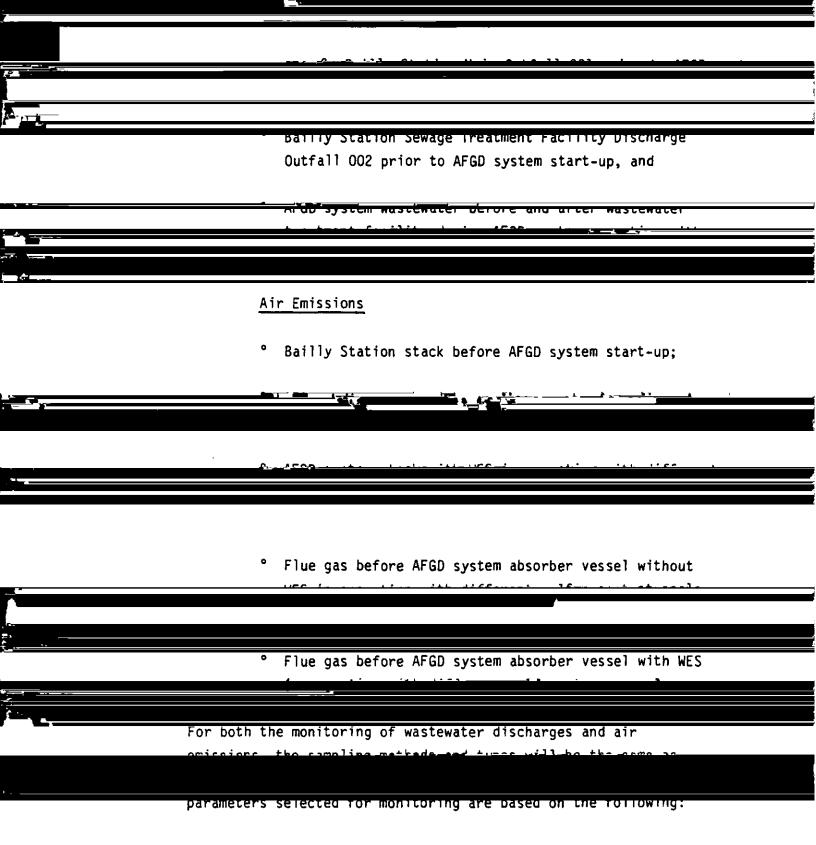
			ĒĒ	<u> </u>		
	- Survey) 	Spe Spe	Spe Spe	Spe Spe	
			&		φ_φ	
	,,	ŭ.ŭ		đ	L é	
L. JE GAS	ring	e ime	e ime	i ae	a E	
1-3 (CONT DRTHERN IN ATION ADV		oruary	ĨĨ	tober	cober	
PU		tes		re.	ast 11	
				* # 5 % 7	ר א	
8		• ·				
				* 4 5 7 *	רך לא	
8		s 1 Stati		existi . ern gr f rest a n down t a ft fro r	of A, a nce on d	
		s 1 stati		existi . ern gr f rest a n down t a ft fro r	of A, a nce on d	

J

1

5241T

6-23


1/91

			arters	ve nd Spectrum ve nd Spectrum		ve nd Spectrum re nd Spectrum	re nd Spectrum ve nd Spectrum		
				dB		dB dB	Le Le		 1
	E GAS				•••	a 5			
	(CONTE ERN IN IN ADVE	N PROU	u j			,			
<u>y</u>	LE 6. IR, NO NG ST	FURIZ	Mon i Pe	Oct		0ct	Oct		
	TABLE 6. PURE AIR, NO Y GENERATING ST	DESULFURIZ		curving parea	of small tation	; from	e Acres ngs Road) ng flat		
	Be		escripti	e #14 al. northeas	nslope s 1 toward: th	about 4(ence	rom the ineral S [rai] in		
е. 									
				80 ft sc ence, th	n south jill. Cr bout 100	cross fr estern g	bout 100 ntrance n Cowles	rea.	
-			Station	IJ		т	Ι		

				station	ere,	l with 000 and	dBA) nning			
			-							
2_	a D FLUE GAS	ONSa	1989 were as 1 9 to 31.	to two times found in the termination of te	or 20 minute po or Leq.	e octave band 500, 1,000, 2	weighted sound ute period at '			-
	N IN ADV PRO	NG S	s du ctob	rom ytin	erva d le	e fo 25,	bwes a l ng.			
] 3LE 6.	IR, NO NG ST FURIZ	EL MOI	ring [to 18	Ey vai For be	secor valent	ts wei 31.5,	ions, rded e ated :			
t	PU GENE	anna	moi iri}	fre	s ai ite	ies ies	ed :re de			
	B		a - The sound February	b - The monit per monit	c - dBA measu used to c	d - Sound lev center fr 8,000 Her	e - For the i measureme and end o			
			Footnotes:							

÷

<u>Wastewater Discharges</u>

1.	Parameters	which	are	not	required	to	be	monitored	by
	regulatory	agenci	ies;						

2. Parameters which have been analyzed in similar studies;

3.	Parameters which are analyzed as part of the APC-200 test and
_	
4.	Parameters that could be affected in various environmental

6.1.4 SCHEDULE

6.1.4.1 Duration

Environmental characterization sampling will be initiated before start-up of the AFGD system and will continue for the 3-year demonstration period, depending on the environmental media to be sampled as follows:

• February, April and October, 1989: Sound Surveys on

March, 1990 through January, 1991: APC-200 test and

spalues with coal limetane sch and runnum.

spring, 1990 to spring or summer, 1992: Bailiy Station

Jummet to raily 1352. Now injurated time somplify, and

- * Summer, 1992 (Startup) through 3-Year Demonstration

6.1.4.2 Frequency

1

Environmental characterization sampling will be conducted once during an APC-200 test before AFGD system start-up for coal, limestone, gypsum and ash. Similar sampling will occur for these media and hydrated lime, one time during AFGD system

	these media and hydrated inne, one time during A db system	
	analyzed once each for SO $_3$ and % S. Sound levels on Bailly	
	5	
	Station property and the surrounding area will be determined	
	once prior to start of construction of the AEGD system	
	-	
۲. · ·	Bailly Station operating data (air emissions and wastewater	
· ۲		
	maritered on a survivally basis lysin that 7 years demonstration	
	with and without the WES in operation, also when the system is	
		_
	content coals are used, wastewater at various locations will	
	be monitored once each for sulfate; air emissions at select	
•	2	
	SO_/H_SO_ with and without WFS in operation: gypsum will	
	operation of the WES. It should be noted that the proposed	
	<u>ا المحمد من هوند من الحمد المحمد ا</u>	
	possibility when different cultur content colls are used that	
) r	
		_

	<u>And Alphaneritoning will consist of remitoning required by</u>
	monitoring required will be defined by the AFGD project's permits. Environmental permitting began with the initiation of the development of the EIV in the Fall, 1988. This was followed in the Spring, 1905 when work was begun on obtaining air emission
	<u>Rad-restavator diochouse consite</u> <u>Fauincenental consitet</u>
	environmental permitting activities which were not required prior
	project, but may not be completed until the AFGD system is in operation. Environmental monitoring requirements based on contact
	in Table 6.0-2.
6.2.2	PERMITS AND CONDITIONS
	Currently it is expected that there will be three major permits
	conditions: (1) Permit for Construction of Air Pollution Control Facilities, (2) Permit for Operation of Air Pollution Con@fB1
	wastewater (domestic sewage and process wastewater). In addition, the Bailly Station's existing permit for Operation of Air
	Station's stack will be used when the AFGD system is not in operation or during an upset condition. Copies of the existing

.

.

Permit for Operation of Air Pollution Control Facilities, the AFGD system's Permit for Construction of Air Pollution Control the discharge of wastewater, are included in Appendix A. Details مشكرته أورجوها waste ansposan 6.2.3 MONITORING REQUIREMENTS AND ENVIRONMENTAL MEDIA 6.2.3.1 Air Emissions Compliance Monitoring for Air Emissions: Because operation of the AFGD system will involve air emissions AFCTTO COARS4 T 0 1 stacks as discussed below and shown in Tables 6.1-1 and <u>Ar indicated in Fortion 4.3 Atmorphonic Porcures</u> Station's flue gas will flow to the existing stack. limits shown previously in Table 6.1-1. As can be seen from this table, the IDEM, OAM has placed limits on

	Permit Expiration Date	ی ۱	ct ₋a	None	17, _a	am am ream	r T
	nit d/	lev	ാ		et .	U ts B B	Ne Ne
ANA ED FLU T ION OF ITLES	- <u></u>	e and год гаде	e and ng rage	8 4		40% on verage	e and ng rage
I I I I I I I I I I I I I I I I I I I	ag i roac	ave , ro , ed	ave r ro rjed			Inut	ave ed
TABU TABU -Y GENERATING ST DESULFURIZ DESULFURIZ AIR POLLUTION	nitoring equency	ntinuous	ntinuous	Je	ce within D days of GD system art-up and ce during	ntinuous	t inuous
	Permit Limits	1.2	N/A b.c	None	0.22	40	N/A b.e
	er	/whiteu)	/wyBTU)	//MIBTU)	la e Matter sTU	(:)	<u></u>

I

			revoked ermit		S	ck with If the ana has	r r			
			mit pt 0)		na	rti	ys on b¢ ie:) u		
6.2 CONTD)	NO RN INDIANA ST/ DAVANCED FLUE IZ/ DPROJECT	STE EM, OAM FO NSTRUCTION OF N C DL FACILITIES	tiv ril 4, 1990. wil 18 months afte herr liana on March a f of 1-year or	•	is e used for inf Novi ru the AFGD sy	<pre>ucted in the ration System he first 180 b + b urst 30</pre>		ir ler to allow co le lit limit or lb		
9	PUR N ENEI S DI N	MIT F R PC N	wa: com d b; inu	able	g f(ana per Boti 7 te: an eat 1).	s rout in in	•	
					7.6					
						، بد ن کور میں) i		
			۔ ۲	- 9	ι υ	- p		U U		

5241T

Footnotes:

,

-2

6-32

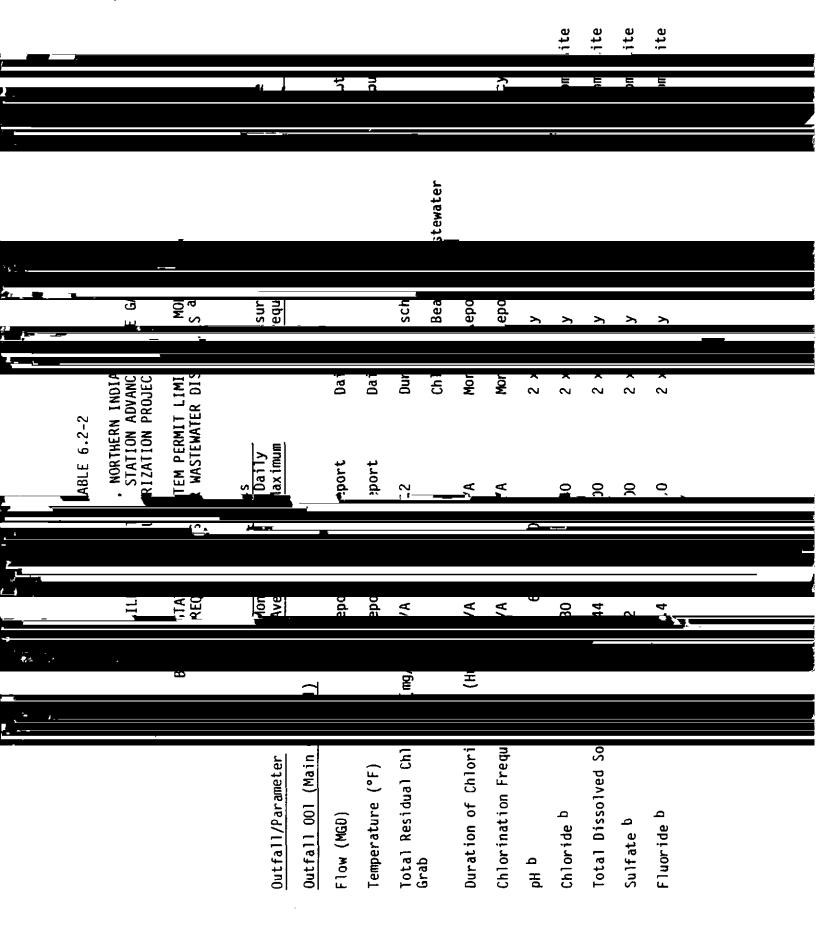
,

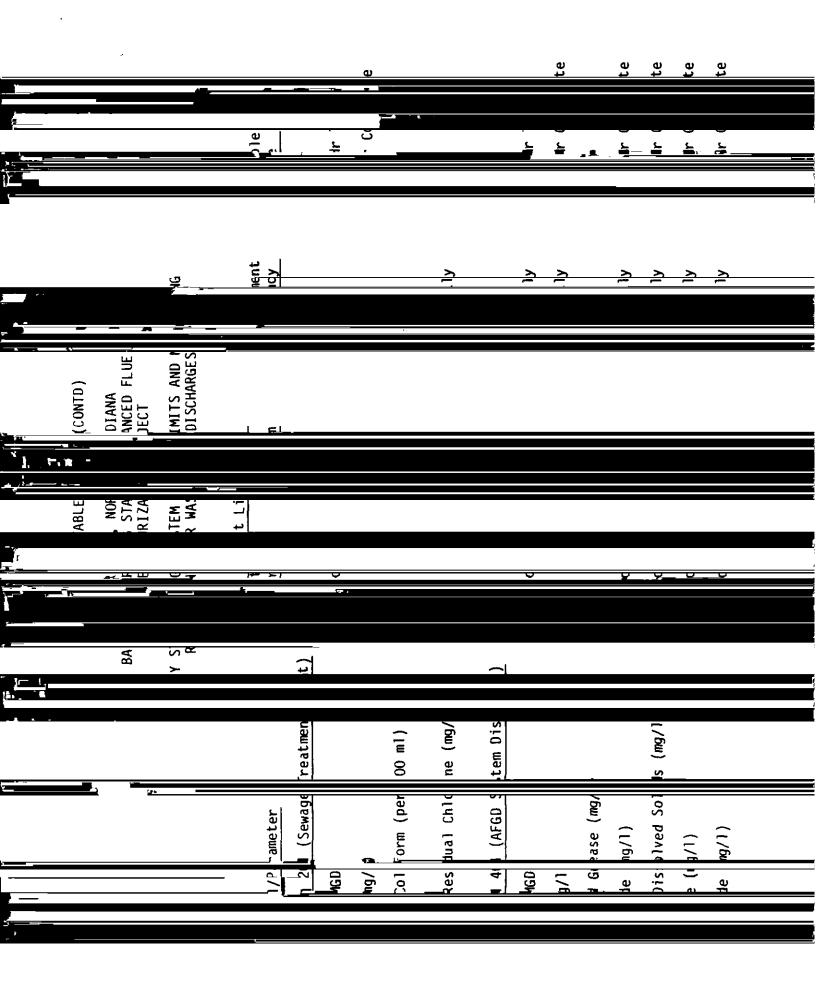
1/91

-2	permit limits for NO _x . SO ₂ emissions are calculated
	from bunkered or as burned coal, or natural gas sulfur
	<u>content</u> A stack test for particulate matter is required
	once every 2 years; whereas, opacity is monitored
	operation of Air Pollution Control Facilities is in
	effect until July 1, 1992, Prior to this expiration date.
	Station permit, IDEM, OAM has placed limits only on
	Unit 7 and 9 ducts. In addition to those menitoring
	Unit 7 and 8 ducts. In addition to these monitoring
	requirements and permit limits, the IDEM, OAM requires
	the following:
	Particulate matter emissions from each of the
	limestone and hydrated lime bin vent filters shall
	ha lighted to 0.02 and not not day soft
l de la companya de l	
	roadway flushing program, and
- <u>-</u> -	maximum sulfur content of 0.3 percent.
	Rationale for Air Emissions to be Monitored. The Bailly
<u> </u>	
	emissions from the new stack, emergency diesel generator

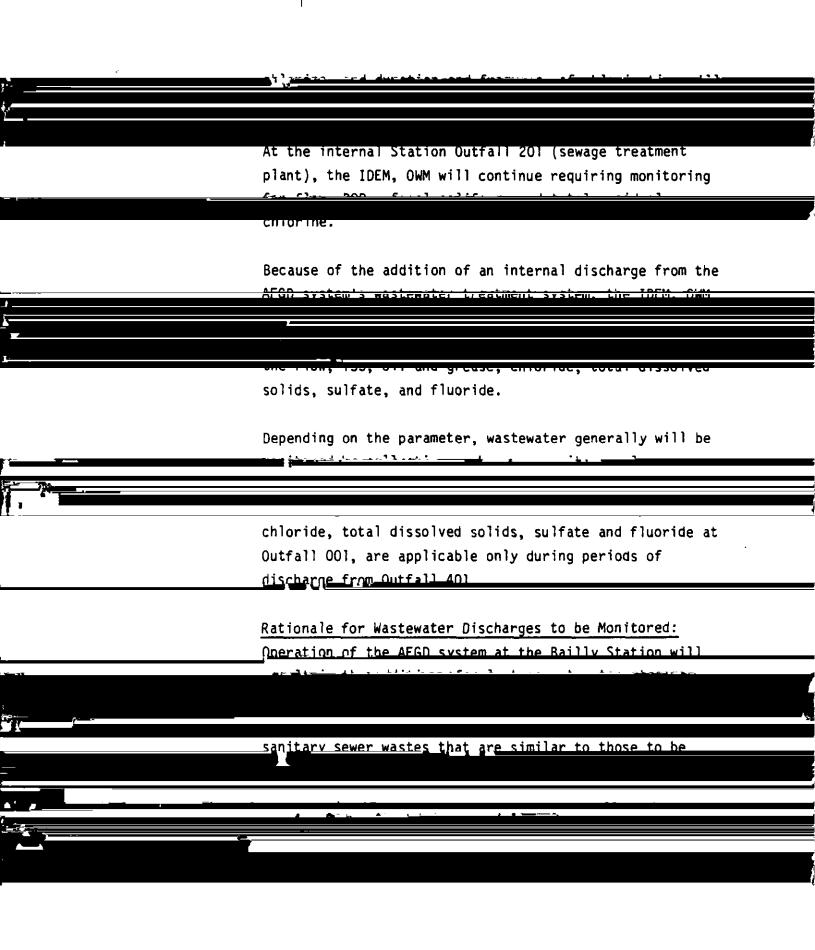
and material handling. The rational for emissions monitoring requirements are discussed below.

The Bailly Station currently has air emissions monitoring


	demonstration period, monitoring will continue for SO.
	The AFGD system is not expected to change from current
	perimente fon these two semantes as the summer ly
	more extensive monitoring requirements for these parameters.
	The air emissions from the AFGD system's emergency diese?
	emissions from materials handling are below the PSD
	source.
6.2.3.2	Wastewater Discharges

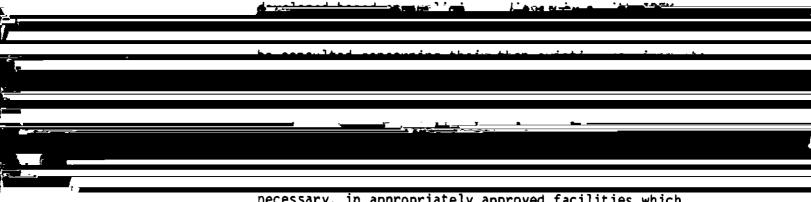


· · ·


...

1

			NG		ht August 31, 1993.	rge of AFGD system process water	ed parameters and the							
		9				<u> </u>								
<u> </u>														
-		· · · ·),			
	0)		IMI DI :		ê	l)	ts MM		 					
	-2	N INDI/ ADVANC PROJEC	IT LIMI VTER DI:		and ex	ed only	limits M, OWM.							
		- 1			<u>.</u>									
	<u>ш</u>	ATI ATI ATI	l pe Ivst	<u> </u>	1	ni	n o						 	
- <u> </u>										3				
			6											
·			·											
		BAILI	STA' REQ		was	ramet to O	that has	app1						
<u>π</u>		8	<u> </u>		3	<u>ب ہ</u>	<u>ع</u> ب	סי 	 			 	 	
h			a i		ą	J.e	0	Ð						
					The NPDES pe	The indicate from Outfall	Report indic information	N/A indicate						
					NP DE	ind Du	ort orma	ind						
					The	The fron	Repc infc	N/A						
						1	1	1						
					гð	q	υ	p						
					Footnotes:									
					Foot									



<u>,</u>	Outfall 401, process water from the AFGD system, will be	
	previcted wastewater characterization of key parameters	
	A LARING AN TOPIS OURS L., ALL MARKED ALL ALL TOPIS OURS	
	addition of the discharge from Outfall 401.	
6.2.3.	3 <u>Solid Wastes</u>	
	Compliance Monitoring for Solid Waste: Operation of the	
	three wastes: ash, gypsum, and wastewater treatment	
	n <u>, line – Ji – Line karstra</u> k <u>i i i i i – Indu</u>	
	there are the maint to conclude the property of the	<u>rosult_g</u>
	the Station does not analyze the ash.	
	If gypsum from the AFGD system is disposed in a landfill,	1
		, 1
	Similar noguinements and expected for the westernation	

Similar requirements are expected for the wastewater treatment system solids.

.

<u>Rationale for Solid Wastes Monitoring:</u> As indicated above, the monitoring activities for solid waste were

necessary, in appropriately approved facilities which have their own approved environmental monitoring programs that they are responsible for.

6.2.4 SCHEDULE

6.2.4.1 Duration

Compliance monitoring will be initiated as part of start-up activities and will continue through the <u>Commercial operation of the AEGD system.</u> However, only,

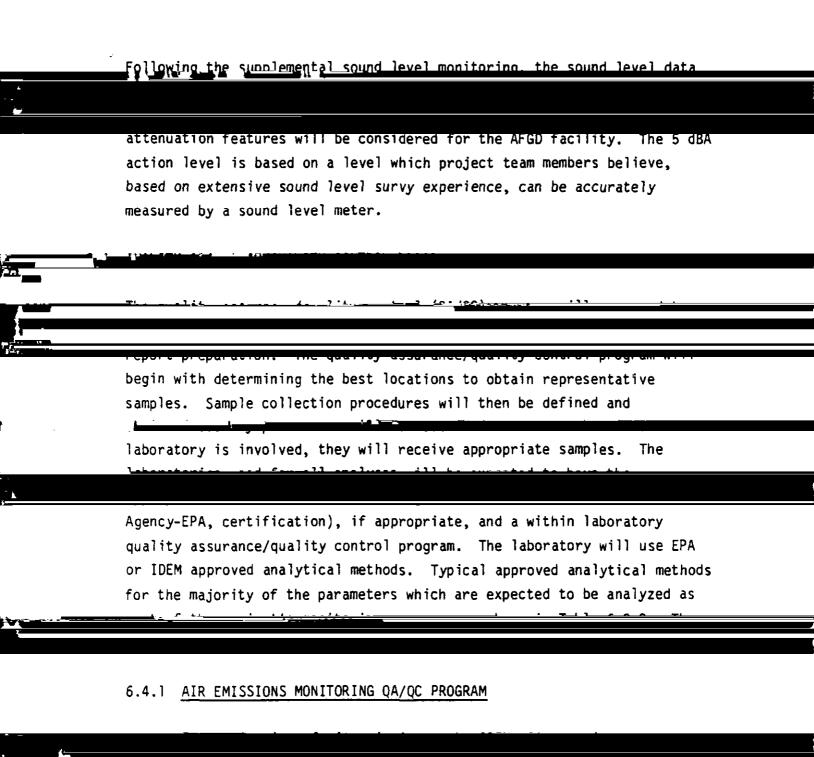
1995), will be provided to DOE per the Cooperative Agreement.

6.2.4.2. Frequency

The frequency of compliance monitoring for various parameters is based on the permit conditions for air emissions, wastewater discharges and solid wastes. The frequency of compliant is decembed in Tables 6.0.2 for 2 line

and 6.2-2. The frequency for the general categories is summarized as follows:

-		
	9 Wastewater Discharges, Daily two times weekly	
	• Wastewater Discharges: Daily, two times weekly,	
7		
	⁹ Salid. Uneter To be determined by regulatory recover	
	materials are denerated. There may not be any	
<u>م</u> ج		
, in the second s		;
	The persection for supplemental equipermental impact resitaning	
· · · · · · · · · · · · · · · · · · ·	determined	
₽ ==1		
	Environmental Assessment, and (2) evaluates the need to monitor	
-		
-		
	6.3.2 MONITORING PREDICTED IMPACTS	
	The area in which the Bailly Station is located is highly	
	industrialized. Thus, impacts other than in the immediate	
	sind and the france wild be difficult by the	
	Therefore, the planned environmental characterization and	
		i
	<u>supplemental monitoring be addressed in more detail than shown in</u>	


6.3.4 SUPPLEMENTAL MONITORING MEDIA

The AFGD project will be constructed and operated in accordance with all applicable governmental rules and regulations. This will and the definition of good engineering protect to protect normer it is believed that the compliance and environmental

after AFGD system start-up. All of the stations described in Table 6.1-3 and shown in Figure 6.1-1 will be monitored. At each of these stations, daytime and nighttime sound level measurements will be taken for the stations above in Table 6.1.2 taken at these two stations.

> will be conducted before and after AFGD system start-up. If the after start-up survey is not conducted during a time (fall or winter) when vegetation and insect noise are less likely to interfere with sound level measurements, a second after start-up

> > consistent with Arbu system operations.

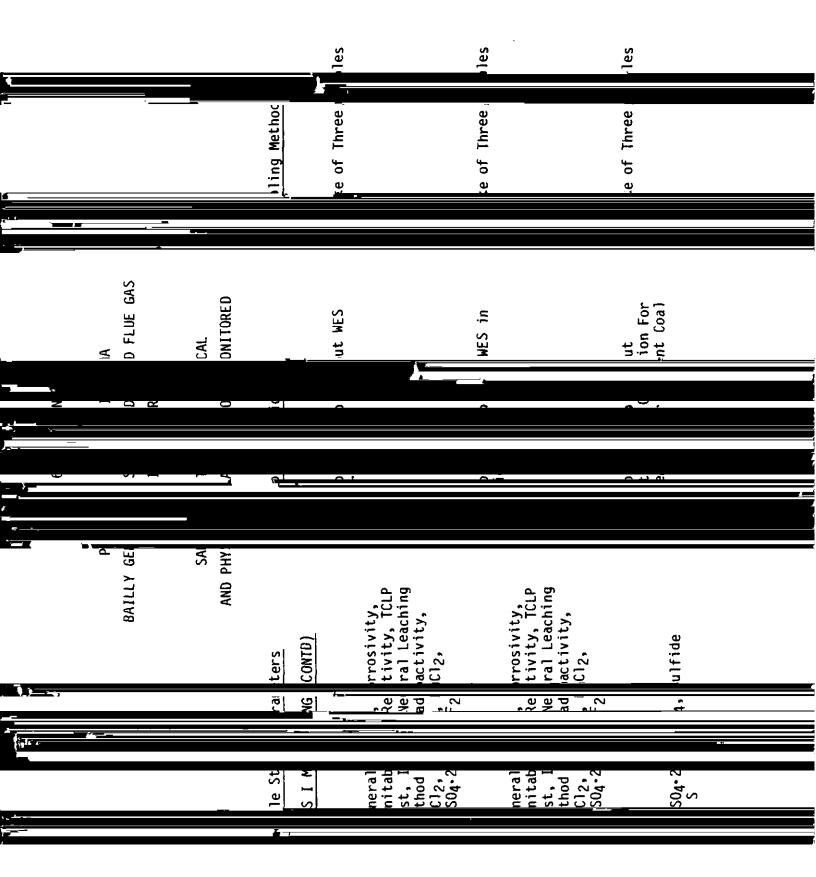
pre-use tet 1 1 dises Administrative Code (190) and EBA

The QA/QC program for the CEMs or collection of air emissions monitoring will include the following, which may vary depending on the gas or instrument being calibrated.

TABLE 6.2-3

PURE AIR, NORTHERN INDIANA BAILLY GENERATING STATION ADVANCED FLUE GAS DESULFURIZATION PROJECT

POTENTIAL CHEMICAL AND PHYSICAL PARAMETERS TO BE ANALYZED AND ANALYTICAL TECHNIQUES


	PARAMETER	ANALYTICAL TECHNIQUE/METHOD	
1-			
	Ag, St, V, Zn		<u>_</u>
	Hg, Ti	AA	
	Ni, K, Se, U		
	C03	Nonindispersive Infrared Analysis	
	TCLP Test	40 CFR Part 261 Appendix II	
	Flow (Makeup Water and Wastewater)	In-Line Flow Monitors	
	e		
······································			
	Indiana Neutral Leaching Method Test	Indiana Solid Waste Management Board Rules and Regulations	
	Mean Particle Size	20 Minimum per Sedigraph 5000D Plus Sieve	Analysis
£			
i			
	Oil and Grease	40 CFR, Part 136	
	Opacity	CEM	
	5241T	6-45	1/91

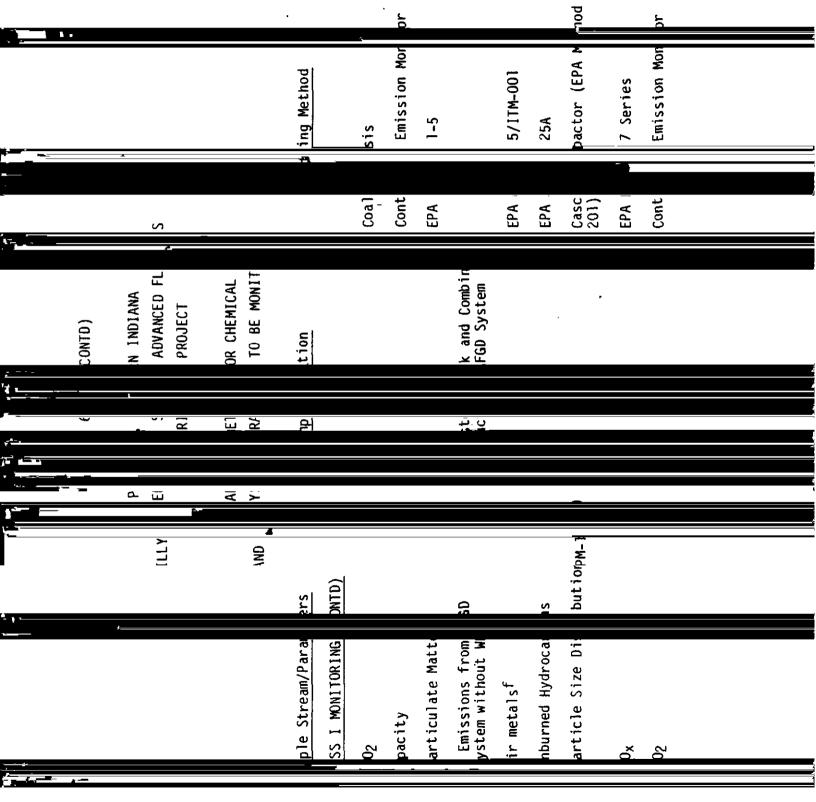
POTENTIAL CHEMICAL AND PHYSICAL PARAMETERS TO BE ANALYZED AND ANALYTICAL TECHNIQUES

	PARAMETER	ANALYTICAL TECHNIQUE/METHOD
	Particulate Matter	40 CFR 60 Appendix A, Method 5b or 17
	рН	pH Meter and Electrode
	Phenols PM-10	Gas Chromatography/Mass Spectrography
	P-trackinikustoslussa.	
<u> </u>		
	S0 ₂	40 CFR 60 Appendix A, Method 6c or 19
_		
	SUBMIZSUA	
	Solid Dissolution Procedures	Nitric Acid-Hydrogen Peroxide Dissolution; Lithium Borate Fusion
	Specific Surface Area	4-Point BET Analysis
	TDS, TSS	40 CFR Part 136
	Temperature	Thermometer
	Unburned Hydrocarbons	EPA Method 25A

				s		Ś	Ś	Ś	
			Sampling Method	C mposite of Three S _{ampl} es		Composite of Three S _{ampl} es	Composite of Three Samples	Composite of Three S _{ampl} es	
	INDIANA NDVANCED FLUE GAS 'ROJECT	CHEMICAL O BE MONITORED	uo	-200 Test C		iod	- APC-200 Test Co	o Outlet Co	
ab T	, N S RI2	ETH		, pé		ed rat	<u> </u>		
	BAILLY GEN	AND PHYS			ate Volatiles, Itimate 4, 0, cu/lb dry),	D ed	<u>ຍ</u> <u>-</u>	<u></u> .	
	/				Volatiles, Volatiles, itimate 4, 0, cu/lb dry),		<u>ب</u>	<u></u> .	
	/						<u>ب</u>	E al/	

						P	J.		<i>l</i>	
			21	hreql			hreg J		1 GD -	
			ethc	hri			<u> </u>	ذ بر بر		
<i>F</i>										
			Samp	Composit			Composit	Como o tito		
	FLUE GAS	ITORED					WES		-	
(CONTD) ERN INDIANA	DN ADVANCED FLUE GAS DN PROJECT FOR CHEMICAL	RS TO BE MONITORED	cation	APC-200 Test			ut and with WES For Different int Coal	100 Toot		
ц u	ōō –	~	<u></u>	a,					1	
le R,	FUR L	PAR	am	un			tum pec			
l le R	FUG FUG ME	PAR -		un						
· · · · · · · · · · · · · · · · · · ·			am		120. es), vity, ty,	g er ticle		5 ניי 	vity, , Method Te	
· · · · · · · · · · · · · · · · · · ·		<u> </u>			<pre>l-2H20, ides), tivity, flity,</pre>	ng c, ing article			d Te	
· · · · · · · · · · · · · · · · · · ·		<u> </u>	TD)		ides tivi	rg c, ing article		5 ניי 	activity. lity. ing Method Te	
· · · · · · · · · · · · · · · · · · ·		<u> </u>	<u>,am</u>		-2H20, 	article		5 ניי 	vity, , Method Te	
· · · · · · · · · · · · · · · · · · ·		<u> </u>	TD)		ides i ides i tivi i tivi	rac i ng ced c' ian bing ubl larticle		5 ניי 	activity. lity. ing Method Te	

ł


			ס								rge of ater				
	<u> </u>		Samp 1 i			Grab	Cont inuou:	24 hour cc		Continuous	Grab durir chlorine t	Report	Report	24 hour co	
	Le GAS	Lere D			<u></u>										
9	JRI	4E T AR/	요		in				Di						
	P IR, I Y GEN NG S FURI	SAN , MET D PHY: PARA	Samp		enimc'			3,	n Di:						
9			arameters Samp	ING (CONTD)	, interview of the second s	rease	Flow	t Solids, NO ₃ , General/Met	n Di:	ture		nlorine	Chlorine		

.

-			Sampling Metnod		24 nour total 8 hour composite		24 hour crannsite		ur total		
	S		ŝ		24 nour to 8 hour con	Gr ab	24 ho	Grab	24 hour to		
; , 4 ,	ANA ED FLI T 55	MONIT		Disch							
(CON	ERN I N AD	F OR S T O	<u>catic</u>	nt Pl						Stac	
	— () —	, ,		· · · · · · · · · · · · · · · · · · ·	£		•				
	AILLY GEN	SAI AND PHY:					t ent e t				
						•	л.	*;			
			e St I I M	11 2	<u>x</u>	al C	Syst ity	fate 0i1	M	miss	

L

•

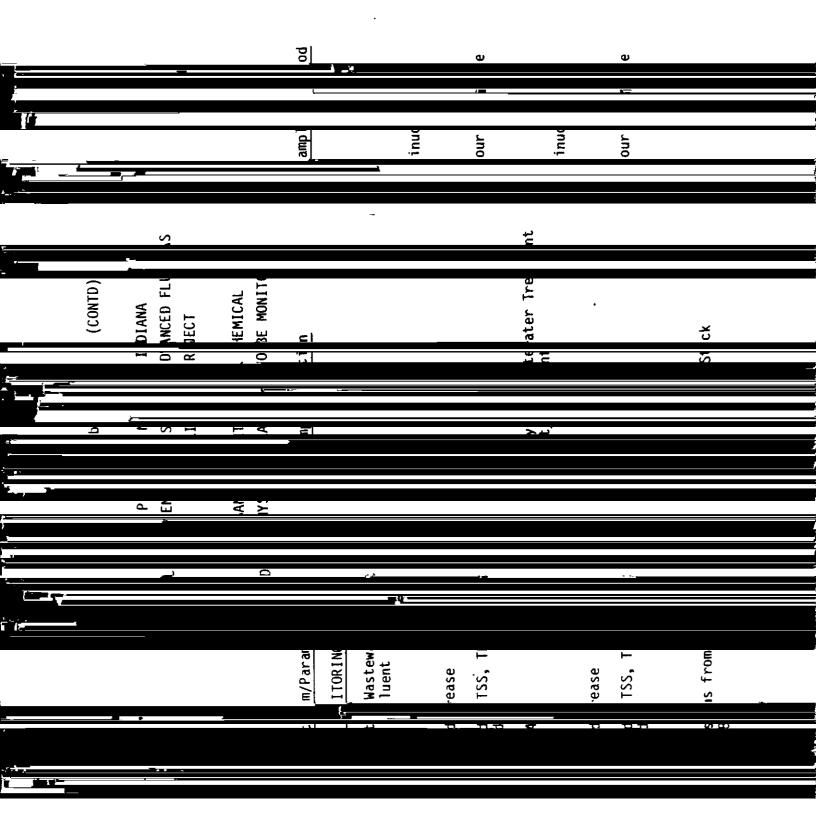
					5					litor		Jdel Jone	
				in Method	d ondensat		100-MT1/ b	d 5A	mp ctor (EP/ 1) d Series	s mission M	d ondensat	General Radio 700 Precision ating Sound - L and Atalyzer wi 1962-1610 Micro del 1.60-P42 del 1.60-P42 lifiet or equal	
_				mplin	lled		thod	thod	ie Imp 1 201) ithod	snoni	ו ו	Gene 700 Pr ating and At 1962- del 1 1 fiel	
		E GAS	RED		Co		EP	EP	t Me FP	Co	CO	Ty 19 Me Pr	
	(Ú)	RTHERN ENDIANA ATION AI VANCED FLUE GAS ATION PI OJECT	DS FOR CHEMICAL	u		and cts to						n Bai ly Station d Suriounding Area National Lakeshore)	
	-4 (CONTD)	THERN ENDIANA TION A VANCED	DS FOR	Locat		m Stacl and nlet Dicts 1						on Bai Ind Suri Nation	
	b le	AIR, ING ILFUR	G ME PAR	Sam		D Sy bine D Sy						atio pert clud	
		BAILLY GE	SA AND PHN	- 4					tion (PM-10).			Spectrum	
			<u>Li</u>	t							1_		
				a a		E C		i a) i			Ų	
	<u> </u>		Ċ	st st	H25	iîs≮ .em	met	ir ne	icl		H25	۲	÷

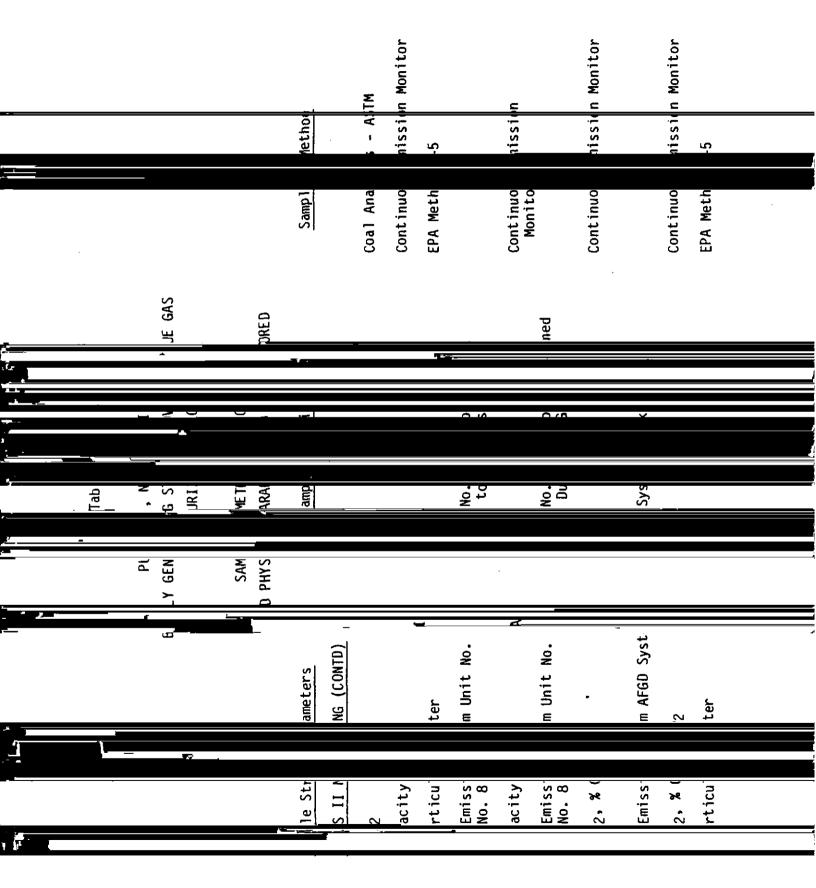
ł

.

			ples		
S	-	Sampling Metho ASTM D222A_06	Composite of Three Si	Composito of Thwas C.	8
TD; FLJE GAS	AL				
	ب <u>-</u> با ب	J	~ 		
Tat Tat R, NG	F UR ME P AR	Sam	nsq.	ن د	n -
				-	
					<i>ب</i>
		int	~	Jnsi ay I acti lity Jd T	megul.
	· · ·	otream/Para I MONITORIN	6 Ash, Btu/	Determined Material, al/Metals, sivity, Ign ivity, TCLP al Leaching	Determined / Requireme

÷φ


.


	-		sthod		f Three Accordance blication elines	
			ing Method		f Three Accorda blicati elines	
``````````````````````````````````````	-					
4					Com Sam wit SW-	
	UE GA	DRI D				
					8	
		B	00		R R	
]e	IOR T.A. Z.A.	ME	, le		٦. t	
	PURE GENER DE	PL SIC				
<u>.</u>	Pr GEN	SAMPL PHYSIC	<u>v</u>		of s	
		-	A 4	······································		<b>F</b>
	- <u></u>		<u>met</u> 6 (	In Rad ita Te Me	nt By nts Y I Rad ita I Te	
	'	L	e al	LeY LeY LeY	rtið eg evite	
			-7,			
			Sam CLA Liq	0082	S FGDOGES	

Ι

	Jing Method Curves	- Composite dous Composite
	MET PARA 0 Samp Dis	ـــــــــــــــــــــــــــــــــــــ
Tab PIRE AIR, N	SAN LING MET ID PHYS CAL PARA Samt Main Dis	ide Sewage
	ran <u>s</u> ING <u>NTD)</u>	Lure Su e, F)

. .





¢						e - e -	o, Cu, V,			c acid nols,	
				ethc		l Ra Pre Sou nal) - 96 and Pre-	, C1 , Sn,	-un-		on c Mn,	
		~		Samp		Type 1 1 1988 Integr Meter Micro 1560 or equ	Ba, B, Be, I SO4, Sulfide	a, lead-210,	and Ag.	without the a 1, Cu, Cn, F.	
	-	L	<u>L_</u>			<u>ب مر در ا</u>	<u> </u>	(D	Ŧ.	<u>P19</u>	
	LERN IERN	FOR	RS TC	ocat		l Bai I Suri Aation	lowii Ni,	gro: 1-230	cd,	st i: follc d pH.	
	-	· 🖌 📊	18	E		540	чÓ	S L	S	掛 ず て	
	d LIV GF		VHY UN			E	consi Li, M	analys ndon-22	yses i	il Leac .he ana de as	
						ŭ	<u>a</u>	<u>6</u>		សថ្មី ស	
					!  	ບ 	90 R	R	Ť.	I a N	
				Sample St	Sound	dBA, Le	Footnotes				

·....

				ree individual ly spaced time o analysis.	u, Pb, Mn, Ni, Se, Ag,			
	(CONTD)	IANA MCED FLUE GAS ECT	EMICAL E MONITORED	consists of at   at approximate u ch are combined r	, As, Ba, Be, Cc,			
	6.2-4	THERN TION AI TION PI	DS FOR TERS TO	S perm are ta d and	wing:			
	Tal	AIR, ING ILFUR	G ME PAR	γ che ∱ s whi ir p∈	he fc			
·		i	S H	9 V -	s			
							 1.	a e
				A 24 hour flow-propo intervals	Air metals and Zn.			

.

1

e

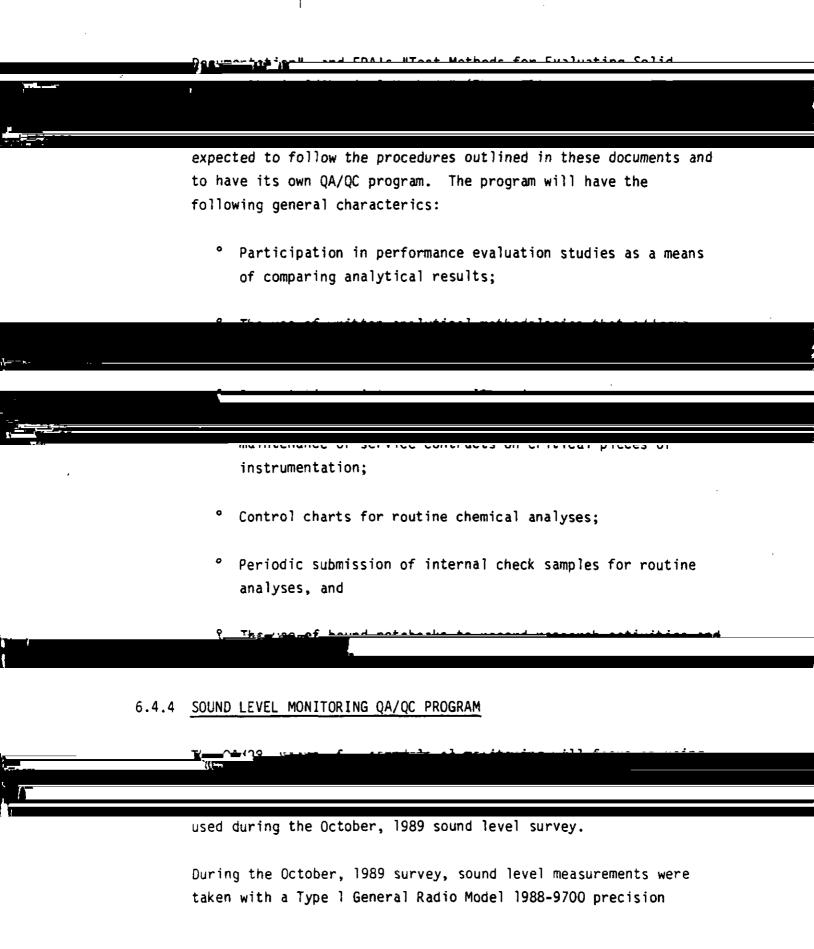
1

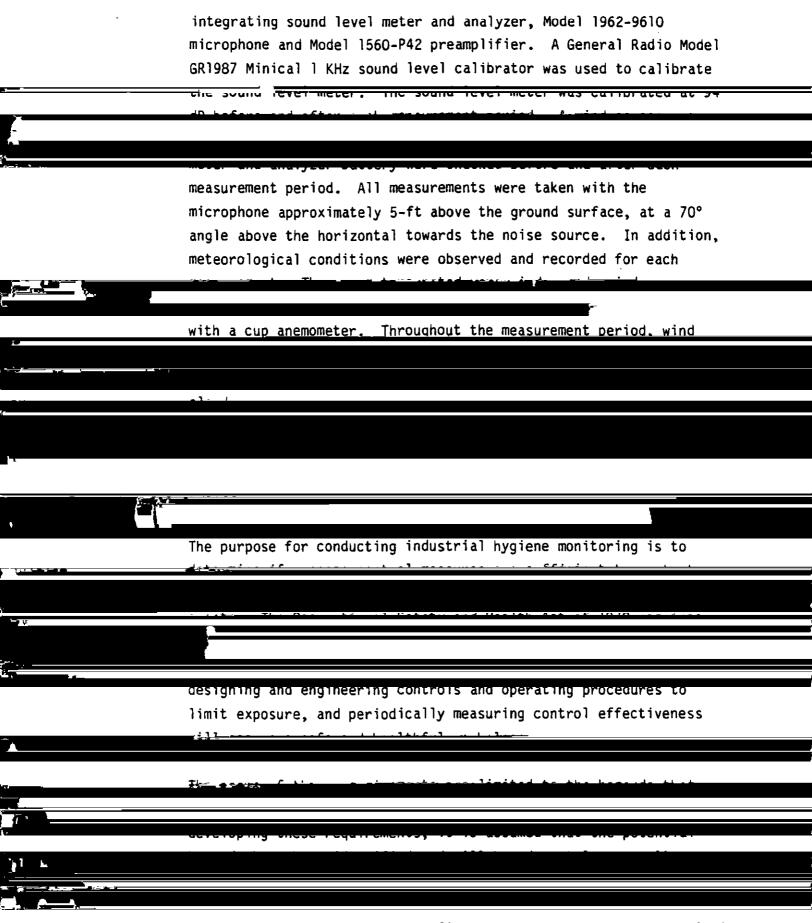
- Automatic system calibration check and data adjustment by computer system typically every 24 hours;
- * Manual calibration of monitors or analyzer using a calibration gas  $(SO_2, O_2/CO_2)$  or standard (opacity) per criteria for initiating calibration:
- * Monitor or analyzer drift determination and adjustment;

Chart recorders;

extractive systems, riters, rites and pump-assemblies,

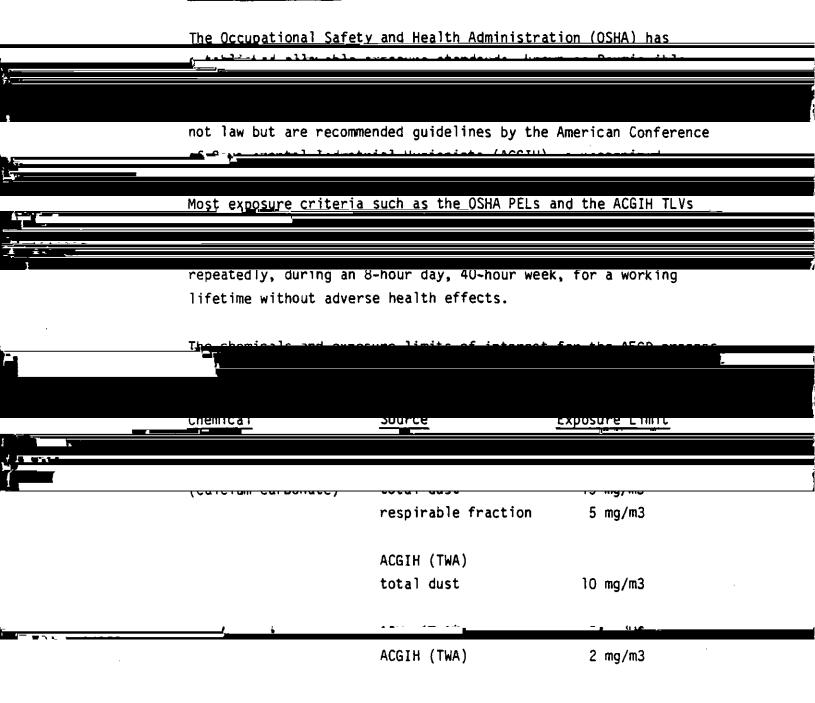
bi-weekly Daaliby ation of appropriate monitoring data;


- Ouarterly cylinder gas audits;
- Annual relative accuracy test audit;
- Initiation of corrective action when either the monitors/ analyzers are out-of-control or the routine QA/QC checks indicate that there is a problem with a monitoring system, and


#### 6.4.2 WASTEWATER DISCHARGES MONITORING QA/QC PROGRAM

Methods for ensuring quality assurance and quality control of

wastewater sampling will be incorporated into the standard methods


	required to be an approved EPA laboratory and to participate in
	° Annual analyses of spiked water samples from EPA containing
	medes permit;
	outstat source for cratageton of parameters in the history
	permit;
	Routine QA/QC testing consisting of analyzing duplicate
• 4 - <b>4</b>	2
	including waview with Dailly Station Managan and Chief
	including review with Bailly Station Manager and Chief
	° QA/QC audit on outside laboratory.
6.4.3	SOLID AND SOLID WASTES MONITORING QA/QC PROGRAM
<u>с</u>	
	OSHWM's "Waste Sampling Guidelines" and "Laboratory Analysis





in operation, the industrial hygiene monitoring requirements may be modified.

## 6.5.2 EVALUATION CRITERIA



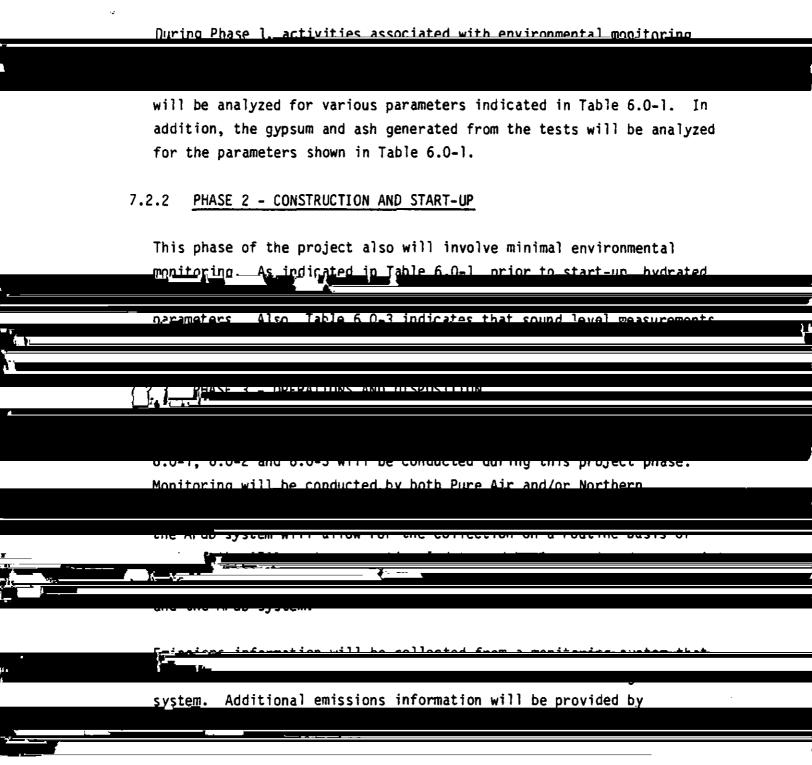
	* *		
Calcium sulfate	OSHA (TWA) total dust	15 mg/m3	
-			
	total dust	10 mg/m3	
Noise	OSHA (TWA)	90 dBA	
	OSHA Hearing		

Conser. Amend. (TWA) 85 dBA

In those cases where exposure levels are not the same, the more stringent standard will be used to evaluate the measured exposure.

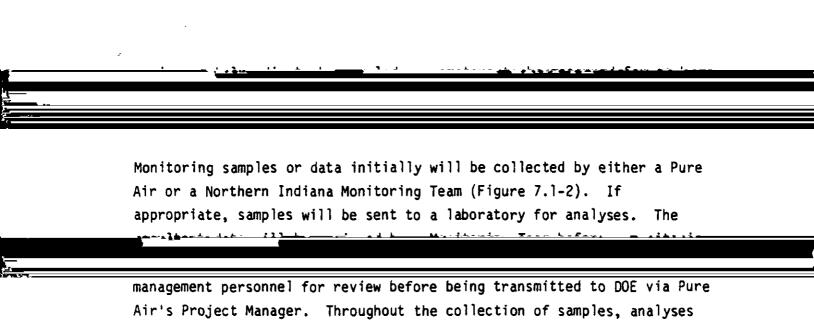
6.5.3 EXPOSURE MONITORING

η.


the type and number of samples to be taken, as well as the

Sound level measurements and personal noise dosimetry measurements will be obtained. Hearing protection will be required for all employees working in areas where sound levels exceed 85 dBA.

113. the test of the start of t


established. Affected employees will receive annual audiograms and hearing conservation training. Noise exposure assessments





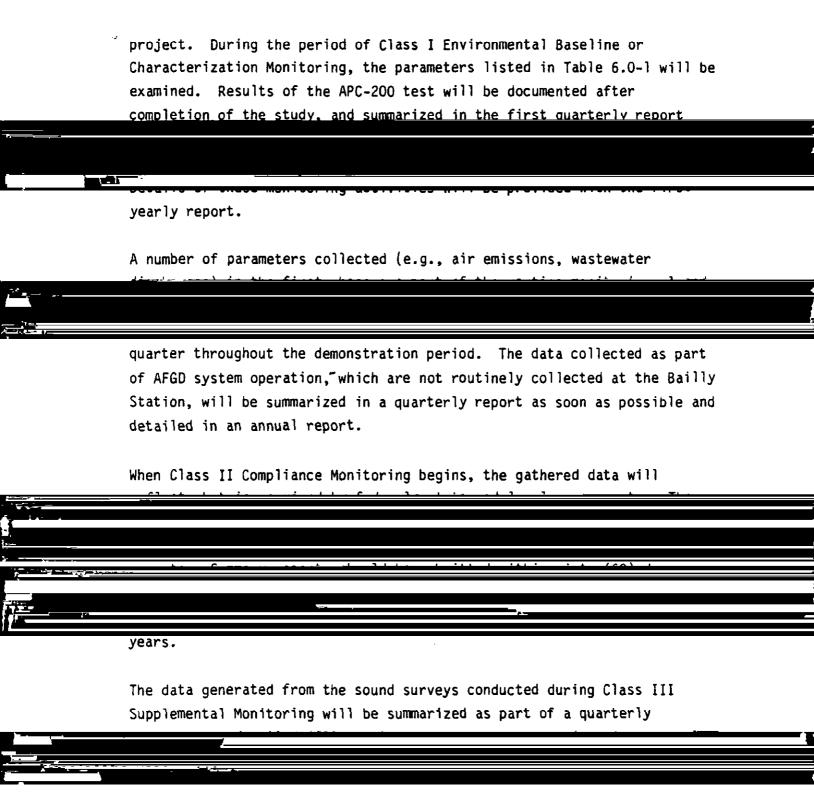
7.3 MONITORING MEDIA

The environmental media to be monitored include solid, liquid, and gas streams. Tables 6.0-1, 6.0-2 and 6.0-3 summarize the sampling points,



discussed in Section 6.4 Quality Assurance/Quality Control Program.

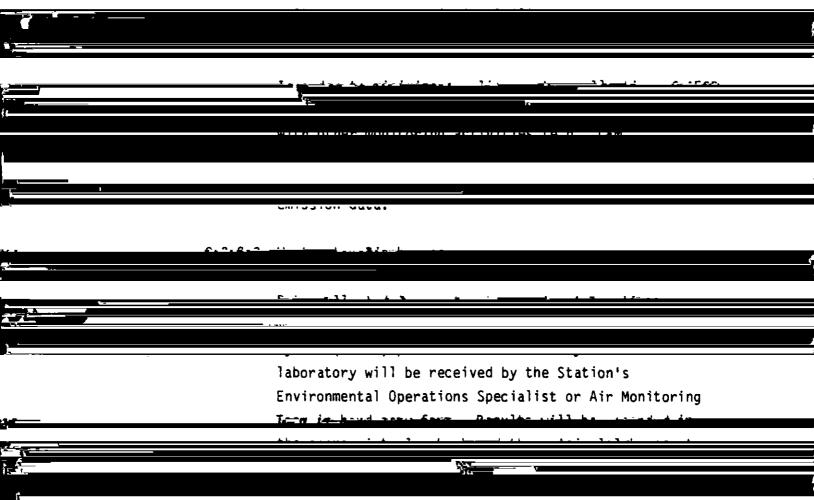
# SECTION 8.0


## DATA MANAGEMENT AND REPORTS

а <b>х</b>	A Data Management System will be implemented in order to maintain
	Uaca management Systemmwill establish a consistent priocedure for botrâdigides foi (
	Continuous Emissions Monitors (CEM's) will be stored on a personal comput <u>er (PC), Other data collected will be stored in hard copy form in</u>
_	Resources for processing data will include experienced members of the
	Environmental Programs Department may be used in assimilating data and reports.
8	2 REPORTING SCHEDULE
17. 2	During Phase 3 of the project, environmental monitoring status reports
1 52	As previously described in Section 6 Environmental Monitoring, there are three classes of environmental monitoring associated with the AFGD

5146T

1/91


Mithagement be (of ) Ti 0 1.6443.6352 0 TD 3Tc 0.0802.0013264-0.045ex877iwnc (with ) Ti 0 79.90 Tr 73.0969 0 TD40.5T



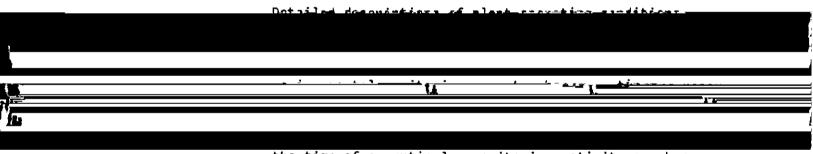
8.3 FORMAT AND CONTENT OF MONITORING REPORTS

	reports with comments concerning compliance and data characteristics when
, } *	
	(Class II Monitoring), and 6.0-3 (Class III Monitoring). The analytical
)	tachniques and methods used in collecting complet have been listed in
_	
-	to de as tollows:
	I. Overview of Quarter or Year
	I Broinct Statuc
<del>.</del>	
	B. Wastewater Discharges
	C. Solid and Solid Waste Discharges
	1. Products and By-products
	D. Plant Operations
	IV. Compliance
	A. Compliance with Permit Limits
	B. QA/QC
X	
	D. Modifications to Sampling or Analytical Methods
	E. Other Miscellaneous Support for the Report
	The contents of the report sections are briefly described below:
	system operation will be discussed and the monitoring activities
3-	

	8.3.2	SECTION II PROJECT STATUS
		project will be described. This will include a description of
- •		AFGD System operation for the next quarter also will be
	8.3.2	SECTION III SOURCE EMISSIONS AND DISCHARGES
		Monitoring data for the various environmental media will be summarized in this section of each quarterly report and detailed
		in the annual report Emphasic will be placed on air emissions
		described below.
		8.3.3.1 Air Emissions
		Forth a cout of 11 contrains on this contraint of an
		opacity, percent of O ₂ or CO ₂ ) will be collected
		and stored on a PC with backup data recorded on strip
		charts. These data will be reduced and accessible via
		the PC. The SO ₂ content of coal at the Bailly
		hter metallinger - som her andersene had an e
· · · · · · · · · · · · · · · · · · ·		
		appropriate Station personnel. This information with



and archived. All of the data discussed above will be


Coordinator for retention.

Various parameters monitored with respect to wastewater discharges will be processed and reported at different intervals according to the Bailly Station operating permits. All of the data will be accumulated and organized in the reports similar to that reported to the Indiana Department of Environmental Management, Office of Water Management. A similar format will be used when makeup water monitoring is conducted.

(T)

solids, and other solid materials (e.g., coal, limestone, hydrated lime). The reporting of these data will be similar to that used for reporting air emissions or wastewater discharges laboratory data. Data from a laboratory will be initially forwarded to Northern Indiana's Environmental Operations Specialist or the Pure Air Monitoring Team. It then will be reviewed and incorporated in a report for further review/dissemination by appropriate project personnel

#### 8.3.3.4 Plant Operating Conditions



the time of a particular monitoring activity or when the WES is being tested.

#### 8.3.4 SECTION IV COMPLIANCE

An evaluation of compliance with applicable permit limits will be included in each report. Excursions, if any, will be discussed in relation to AFGD system operations.

An integral part of determining compliance will be an evaluation of the QA/QC procedures. As shown in Figure 7.1-2, QA/QC checks will be performed at least two times on data as it passes through the Northern Indiana and Pure Air

#### 8.3.5 SECTION V PROBLEMS AND RECOMMENDATIONS

After commenting on monitoring data quality and discussing any problems with Bailly Station or AFGD system operations, the quarterly and final reports will include a section where recommendations will be made to rectify problems. Even if there are no problems during the demonstration period,

#### 8.3.6 SECTION VI APPENDICES

. .

reports, the project will deal with this request on a case-by-case basis. Pure Air may not allow some process information to be released to

of the project, the DOE Contracting Officer's Technical Representative

2	
<u> </u>	
1	
	information is forwarded to the LUIR, the information will have
1 martin	
	The sub- of the second
· · · · · · · · · · · · · · · · · · ·	
	momente on active measure crat

MHI has an extremely strong United States patent position both in the

This involves significant MHI proprietary information which has been

the environmental monitoring reports.

መ<mark>202394601037</mark>L695Tgel63 Tw (oveomposi Tr 0.0234 Tc -7773 0 TD 3 Tr 0 Tc -0.991.028 Tc20.390 ) Tj 0 Tr 53.233008u8ject2195 0 an071 10.1454 Tw65n Tr -step;ሐይ ቺ፶ጛ፝ቒኇ201726ናሪዊ ድና ዓብት/ዓብት ቲቫሪት የራስተያናፀረን ድርፅ ይኖርፅ ይኖርስ ይኖርስ እንደረገ እንደ ተሸቂ-0.0 T991.028 T87 (info በመ2026 በመ2010 በመሰባ በበመሰባ በመሰባ በመደርስ በመደረገ በመደር በበመደር በበር በመደርስ በመደርስ በመደርስ በመደርስ በመደርስ በመደርስ በመደርስ በመደርስ በመደርስ በ

	patent	
3		
_		<u> </u>
	_	
		The types of information that are not considered proprietary include the
1_		The types of information that are not considered proprietary include the

flow rates of materials and stream temperature entering and leaving the overall process, and each major process step (e.g..

consumption of coal, timescone and other reed screams),

- quantitative information on composition and flows for the existing Bailly Station streams for which the percent SO₂ can be calculated, and emissions of additional parameters (e.g., particulates);
  - * frequency of replacement of reagents or equipment since this can have major impact on process costs;

recycle streams is important to environmental monitoring;

is a significant consideration in the commercial potential of the process and environmental monitoring (e.g., where size

## SECTION 9.0

## LIST OF PREPARERS AND PROFESSIONAL OUALIFICATIONS

#### 9.1 AIR PRODUCTS AND CHEMICALS, INC.

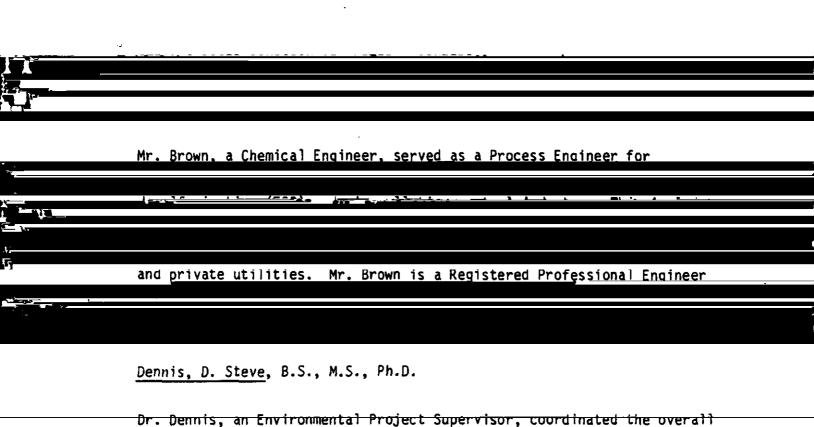


Environmental Engineering Design for Air Products and Chemicals, Inc. Process System Group. He has over 20 years of industrial experience in chemical and refinery technology, process engineering, and environmental assessment, control and permitting. He has contributed to the published literature in the areas of environmental control and water and wastewater treatment, and is a recipient of the Harrison Prescott Eddy Medal from the Water Pollution Control Federation.

#### Reighard, Robert C., B.S. Ch.E.

Mr. Reighard, a Chemical Engineer, is the Director of Operations for Pure Air. He has over 20 years of industrial experience in PVC plant design, construction and maintenance;  $H_2$ , CO,  $O_2$ ,  $N_2$  and Ar industrial gas plant design, operation and maintenance; coal gasification technology;

positions as Plant Engineer and Plant Manager.


9.2 NORTHERN INDIANA PUBLIC SERVICE CO.

Ross, John M., B.A., M.B.A.

Mr Ross is the Sunepintendent of Environmental Planning Indiana's project coordinator for the preparation of AFGD project air monitoring system design and operation, estimation of air pollution - 5 504 HIVOIVed in the analysis of environmental regulation and policy to the FUNE AIN **7.**J Bolinsky, Francis T., B.S. Brown, Gregory N., B.S. Mr. Brown, a Process Engineer, is working on the process design for the

Heydorn, Edward C., B.S., M.S.

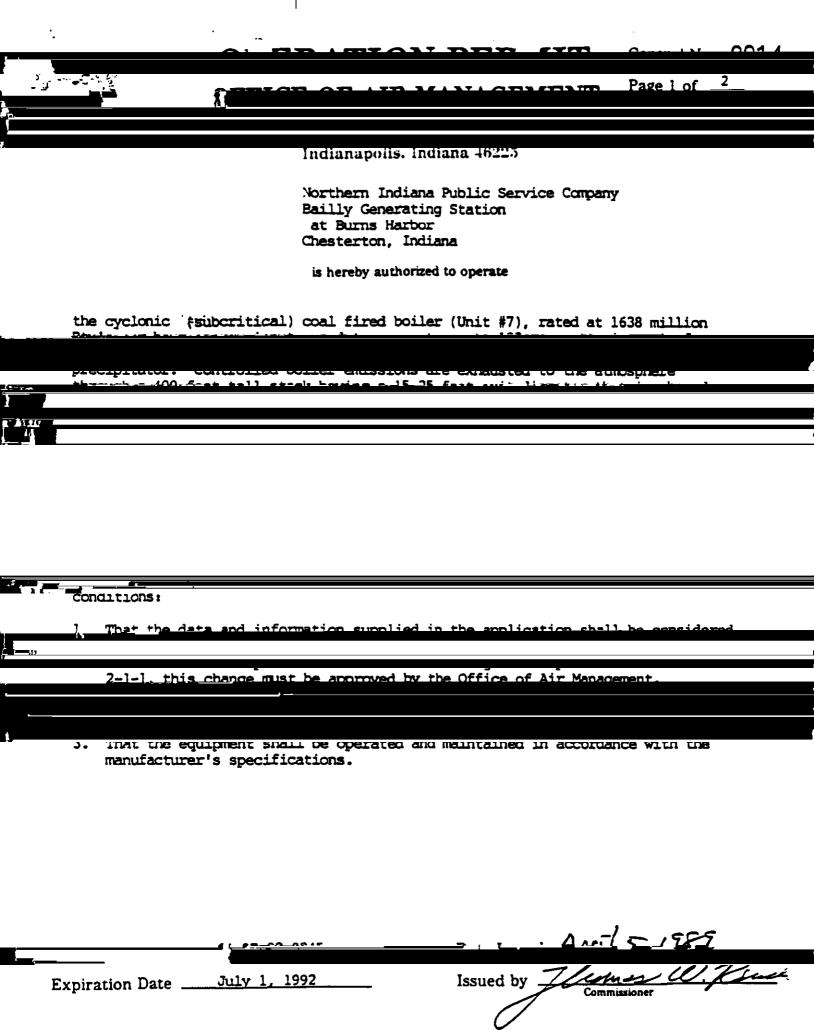
Mr. Heydorn, a Process Engineer, is the Principal Process Engineer for the AFGD project. He has over 10 years experience in the design and operation of industrial chemical facilities.



development of the EMB He had over 10 years experience with

industrial projects an orginate and onland seaterst

### APPENDIX A


### BAILLY GENERATING STATION AND AFGD PROJECT ENVIRONMENTAL PERMITS

- BAILLY GENERATING STATION PERMIT FOR OPERATION OF AIR POLLUTION CONTROL FACILITIES
- AFGD SYSTEM PERMIT FOR CONSTRUCTION OF AIR POLLUTION CONTROL FACILITIES



BAILLY GENERATING STATION PERMIT FOR OPERATION OF AIR POLLUTION CONTROL FACILITIES (DATE ISSUED APRIL 5, 1989)

- 2



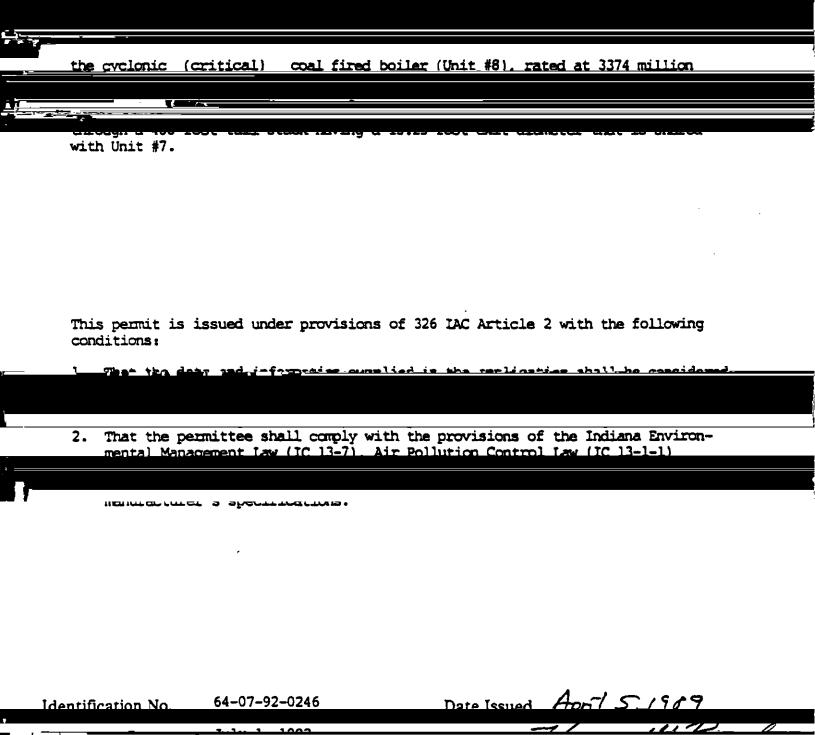
Northern Indiana Public Service Company Bailly Generating Station Burns Harbor, Indiana 54-07-92-0245

**Conditions Continued:** 

- 4. That pursuant to 326 IAC 6-2 Section 1(b), particulate matter emissions to the atmosphere
- 5. That pursuant to Section 4 (e) of 326 IAC 2-1, stack tests to determine particulate matter

		1992. The Omce of Air Management (OAM) shall be notified of the test dates in advance pursuant with 326 IAC 3-2-3, and test reports shall be submitted to the OAM within 45 days	
	44		
·			
	-		
· · · · · · · · · · · · · · · · · · ·		(Note: Analysis based on composite samples for weekends and holidays will be acceptable.)	
<u> </u>		The above analysis will include all of the following on an as bunkered or as burned basis; heat	
		of the quarter shall be submitted by the last day of the month following the end of the quarter.	
•	8.	That visible emissions shall be limited to 40% opacity pursuant to 326 IAC 5-1, Section 2(a)(1), for attainment areas.	i
<u></u>			
-			
	1 -		
			ſ
	-		
	-		
		occurrence. This report shall also include the total accumulated periods of excess	
	10	. That at no time shall the combined rate of heat input for Boiler Nos. 7 and 8 exceed a total of	




# Ol ERATION PER./IIT OFFICE OF AIR MANAGEMENT

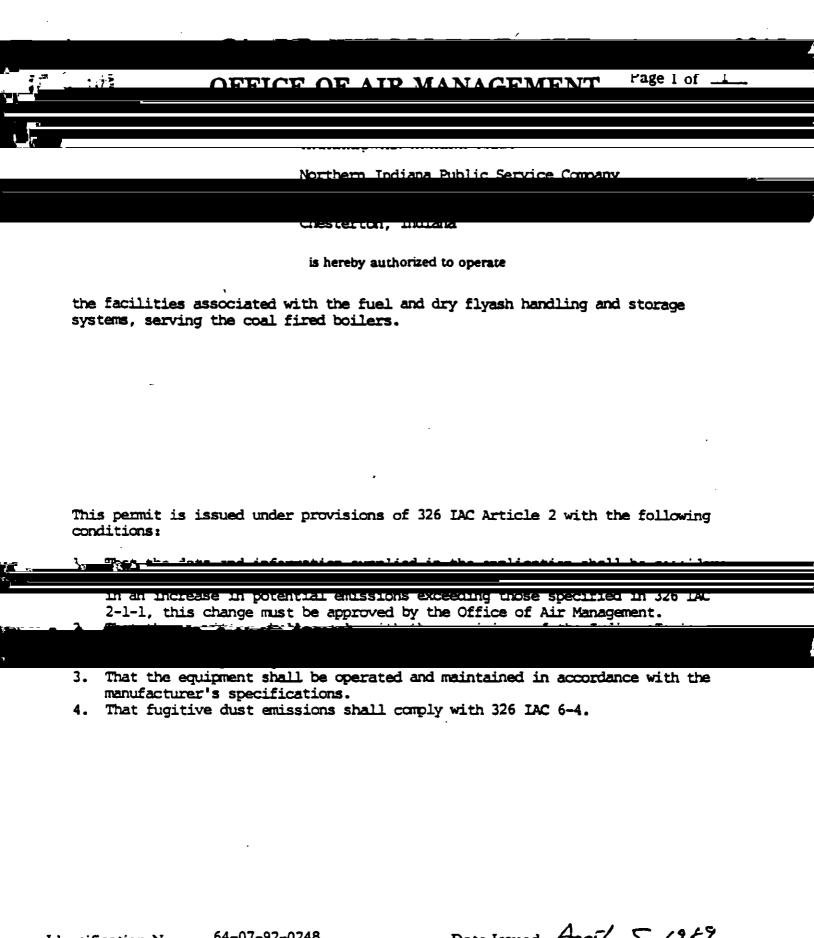
Control No. 2015

Page 1 of ____

indianapoiis, indiana 46225

Northern Indiana Public Service Company Bailly Generating Station at Burns Harbor <u>Chesterton. Indiana</u>




	No	nthem Indiana Public Servae Company	Page 2 of 2	
	Eu	ms Harbor, Indiana		
	-	κ <b>α</b> ,		
-		nolillonis Comlinueo:		
		The transmission of the construction of the continuation of the co		
		<u>هــــــه</u>		
4	<b>1</b> 11			4
- I.		pursuant with 326 IAC 3-2-3, and test reports shall be st	ubmitted to the OAM within 45 days	
		of the test.		
	6.	That pursuant to 326 IAC 7-1-21 (a)(2), sulfur dioxide en shall be limited to 6.0 lbs./MMBty. Boilers 7 and 8 shall natural gas.		
	7.	That the station shall sample and analyze the coal used (Note: Analysis based on composite samples for weeke		
			<u> </u>	
				F
		Records of the daily average sulfur content, heat conter	at and sulfur dioxide emission rate (in	
	8.	That visible emissions shall be limited to 40% opacity pu 2(a)(1), for attainment areas.	ursuant to 326 IAC 5-1, Section	
· ************************************	، ه <u>ر اي</u>	granted to allow, when necessary, the following visible startups and shutdowns.	stack emissions onting poller	
-		(a) During boiler startups an exemption from the 4		
		electrostatic precipitator reaches 250 degrees F, w that the above is exceeded due to special circums	which ever occurs first. In the event	
1)				
	<u> </u>	(b) During poller shutdowns an exemption from the	e 40% opacity limit is allowed for up	
	-			

• •			יייזי מ	Control No	2015
			. رهمند و خوی رسیده .	_ 1 مەتەر	l
	(INIII)	napons, mutana 40.			
A Contraction of the second se	V in		<u> </u>		j
<u>_</u>	Chest	erton, Indiana			
	: <b>: :</b>		6- # -		
	/				

This permit is issued under provisions of 326 IAC Article 2 with the following conditions:

1	the date and information supplied in the englication shall be escaideded
-	
<u>41</u>	

· · · · · · · · · · · · · · · · · · ·	A -1 - 19,49
Expiration DateJuly 1, 1992	Issued by Commissioner
State Form 37079 R	

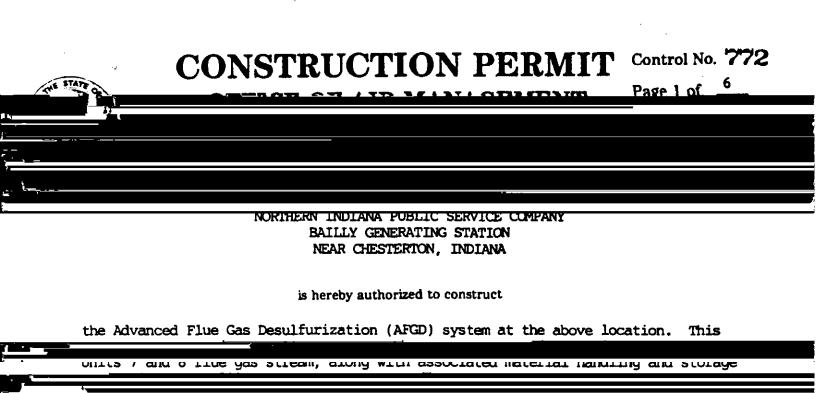


	Identification No. $$		Date Issued	COCL			
						$\checkmark$	
	- 1 1 - +++++				11		
<u> </u>		6					
<u>10</u> .							

AFGD SYSTEM PERMIT FOR CONSTRUCTION OF AIR POLLUTION CONTROL FACILITIES (DATE ISSUED MARCH 15, 1990)

1

÷

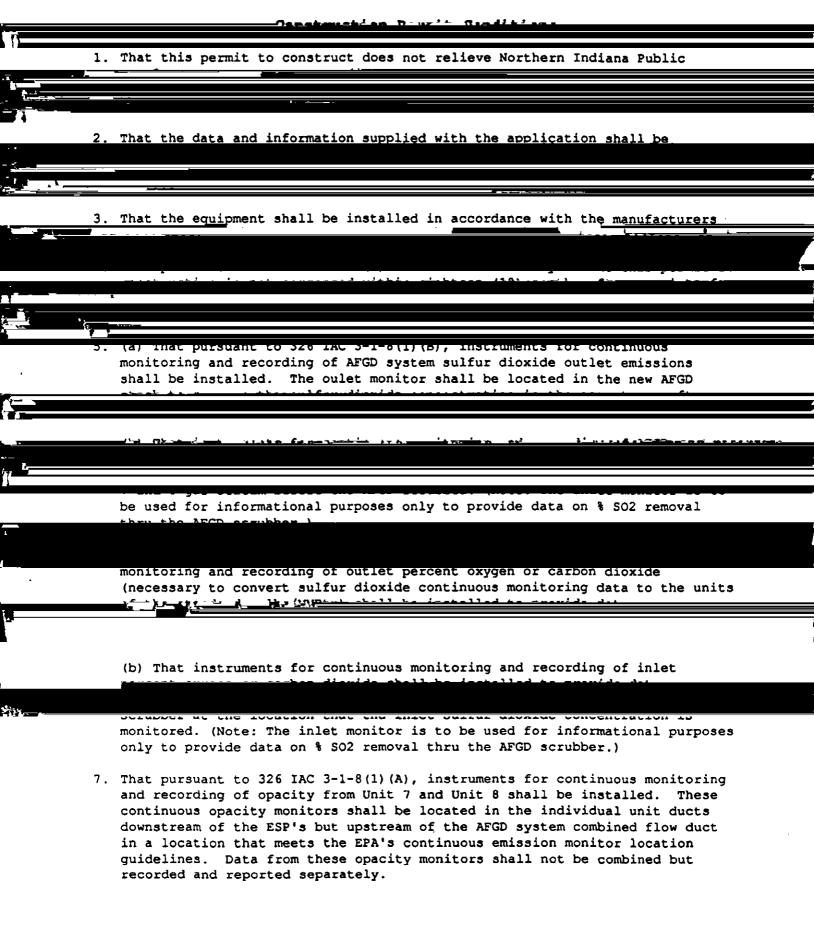

		<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>		
RIMENT	1986	105 South	Meridian Street	
		105 334	P.O. Box 6015	
Ň.		Indianapolis Talashasa	46206-6015	
	· ·	Telephone	317-232-8603	
,				
-				
TO:	All Permittees			
	M Alf			
<u> </u>				
C1 75	BJECT: Standard Permit Conditions		. ,	
501	SUCT: Standard Permit Conditions			
	1. Pursuant_to IC 13-7-10-2.5(b). IC 4-21.5-3-5(f). and	<u>IC 4-21.5-</u>	<u>3-5(h).</u>	
	petition for stay of effectiveness are tited, any par	t or the p	ennt	
	within the scope of the petition for stay is stayed a	n_addition	al_15	
í —				
/ <b>-</b>				
	محسط المسلح			
	j R	ECEIV	EU	
		MAR 2 0 19	390	

ENVIRONMENTAL DEPT.

An Equal Opportunity Employer

Managmsnt.

.




THIS PERMIT IS ISSUED INDER PROVISIONS OF RULE 326 IAC 2-1 WITH CONDITIONS LISTED

Sout064R Ti 0 TrGi0INF0 12.96 -r0.0241Tr -0.0346ANAGEMENT

page 2 of 6

Advanced	I Flue	Gas	Desulfur:	ization	System
PC (64)	1816				



Northern Indiana Public Service Company Bailly Generating Station Advanced Flue Gas Desulfurization System PC (64) 1816

I.



### Operation Conditions

#### Emission Limitations

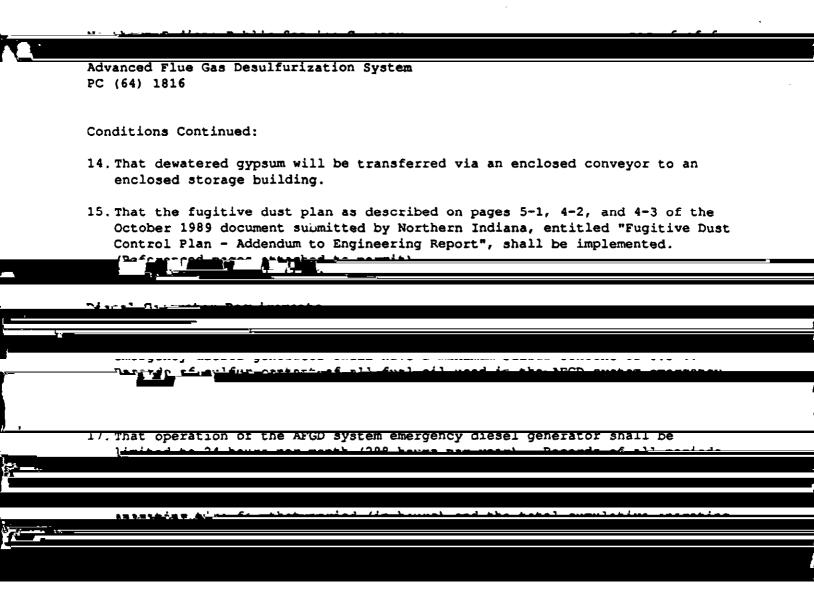
1. That sulfur dioxide emissions from the AFGD system stack shall be limited to 1.2 pound per million Btu's of energy input. (This rate was used in the

4,	
1.	the section from the sharp exchange the state of the state of the A AA moved and
÷.	
<u></u>	
5 Uerre .	
<u></u>	
<u>s</u>	
	(b) That instruments for continuous monitoring and recording of sulfur
	dioxide combined Unit 7 and 8 AFGD scrubber inlet emissions shall be
	certified, calibrated, maintained and operated. (See Construction condition
	Dertified, calibrated, maintained and operated. Abee construction condition
	only to provide data on % SO2 removal thru the AFGD scrubber.)
e	(1) That surgers to 236 TRC 2 1 0 (1) (D) dealer and Al for combining
	$+\underline{h}_{\mu}$ we is a standard - the (M/Dtu) shall be installed calibusted
4	
	(b) That instruments for continuous monitoring and recording of combined
	Unit 7 and 8 AFGD scrubber inlet percent oxygen or carbon dioxide (necessary
	the set of the distribution and the set of the set of the set of the
1. 7 E	monitor is to be used for informational purposes only to provide data on %
	monitor is to be used for intoimational purposes only to provide data on a
<u></u>	
· 9	

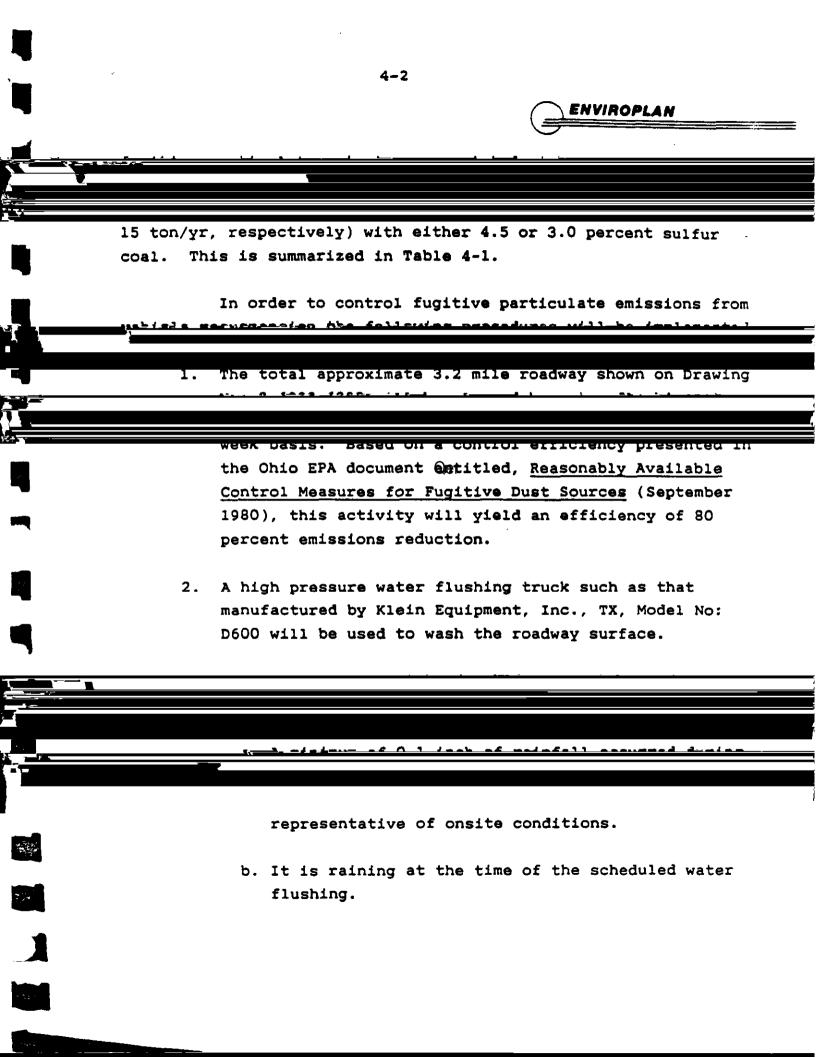
	Northern Indiana Public Service Company page 4 of 6 Bailly Generating Station Advanced Flue Gas Desulfurization System PC (64) 1816
	6. That pursuant to 326 IAC 3-1-8(1)(A) instruments for continuous monitoring and recording of opacity from Unit 7 and Unit 8 shall be installed, <u>martified editorial interval and the hold of 206 Defined and the stalled</u> These opacity monitors shall be located in the individual units ducts
	daily basis. The above analysis will include the heat content and %S on an
	(initial operation is defined as the first time the AFGD is in operation removing SO2 from a Unit 7 or 8 flue gas stream) with another test to be conducted during calendar year 1994 (or in the second calendar year follow(months in thirds to the follow shiph continuous of the follow)
	system and the Wastewater Evaporation System (WES) in service. If the WES
	greater load during the test. (As an alternative each unit may be tested
±	The 30-day rellies weighted average 500 orignies wate tip sounds at .
	excluded from the calculation of the daily average but shall be reported on

Northern Indiana Public Service Company Bailly Generating Station

.


1

page 5 of 6


	LONGITIONS CONTINUES:
	conditions continued.
	9. (Continued)
	A separate 30-day rolling weighted average shall be maintained for the
	A separate so-day forming weighted average shart be maintained for the
	which there is a period of more than one hour during which either stack is
	which there is a period of more than the notif during which either stack is
·	
	Reporting Requirements
	veborcrud vedarremence
	10 That support to 326 TBC 2-1-10 passants of the time duration magnitude and
	10. That pursuant to 326 IAC 3-1-10 reports of the time, duration, magnitude and
	cause of periods of excess emissions (as below) or monitor malfunctions
	shall be submitted to the OAM on a quarterly basis as follows:
	(1) and $(2)$ and $(2)$ and $(2)$ and $(2)$ and $(2)$ and $(2)$
<b>.</b>	a) all periods of excess (greater than 40%) opacity in percent(%), on a
57	Btu's on a block three-hour average basis, during periods when the three
	Wirz Wirz an a block three-hour average basis, during periods when the three
۸. 	
<u>.</u>	
	- date;
<b>4</b>	
	- daily weighting factor (generation or coal burned);
	- daily weighting factor (generation of coal burned);
•	
· · · · · ·	
	Veterial Mandline Regularments
	Material Handling Requirements
	10 mbas about the second to about a spon and the second about the automotion of the
	12. That the limestone to be used in the AFGD system shall be pulverized to the

13. That particulate matter emissions from each of the limestone and lime bin

-----



5-1 ENVIROPLAN Operation of the AFGD system will be Pure Air's Bailly Station functions enterions encodered with the STCR accortaining that fugitive emissions associated with the 20300 As indicated above, Northern Indiana will be responsible nerità negerou a trave vevador writ no teshovatoro r implementing the vehicle resuspension fugitive emissions control The Station's Coal Handling Department will be responsible plan. for carrying out the specific plan activities and for maintaining permit conditions. j, 11 desig68he willer and a second to the second se (*little* and of Pure Т h individeual



BAILLY GENERATING STATION/AFGD SYSTEM NPDES PERMIT MODIFICATION FOR WASTEWATER DISCHARGES (DATE ISSUED MARCH 2, 1990)

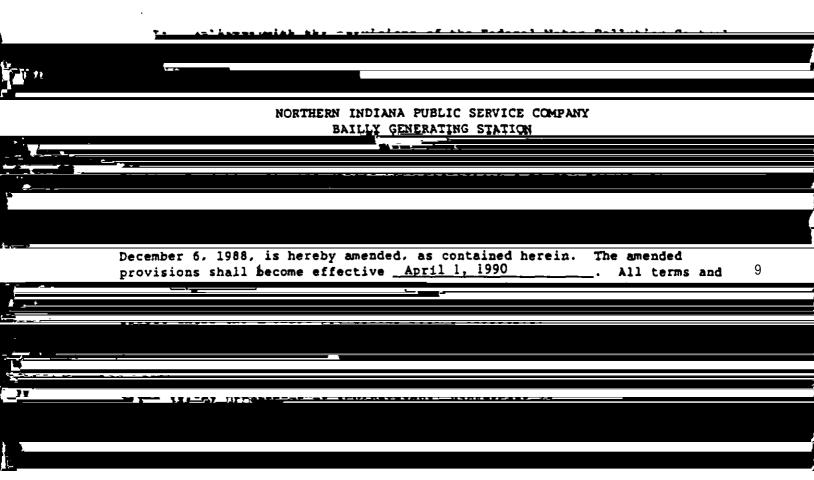
• 2	,
	INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT RECEIVED 105 South Meridian Street
	VIA CERTIFIED MAIL P 741 219 991 Mr. William R. Elliott, V. P.
<u>k</u>	
	Re: NPDES Permit No. IN 0000132 NIPSCO Bailly Station Chesterton, Indiana
	Dear Mr. Elliott
	Your application for modification of the above-referenced discharge permit has been processed in accordance with Section 402 and 405 of the Federal Water Delivation Control labor on anomdod (22 U.S.C. 1251 and 205 and
	itemizes and explains the rationale for the revisions.
	The enclosed NPDES Permit Amendment covers your existing NPDES
<u>i</u>	Consistent with the terms and conditions of this permit, as amended.
	to the final permit.
-	
<u> </u>	
	must include facts demonstrating that the party requesting appeal is the
	requested under the provisions of IC 4-21.5 and IC 13-7-10.5.

An Equal Opportunity Employer

Mr. William R. Elliott Page 2

ł

	If you have questions concerning this modification, please contact
Ź. A.	
	Charles B. Bardonner Assistant Commissioner Office of Water Management
м	fWS/ssh
E	Inclosure
c	c: Chief, Permit Section, U.S. EPA


.

i .

Page 1 of 21 Permit No. IN 0000132

3

### INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT AMENDED AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM



Charles B. Bardonner J Assistant Commissioner Office of Water Management

5003p 9/25/89

and requiremi 0

Page 2 of 21 Permit No. IN 0000132 Revised: March 2, 1990

· · ·

		-		PA	RT I				
A.	FEETHENT	LIMITATION	IS AND MO	אזדחסדז	NC PEOUTR	FMENTS			
а.	LI I LULNI	CIUI INI IVI		MIIOKI	NG KEQUIK	Event3			
	i. Duri	ing the per	lod begi	nning	on the er	IECTIVE	date of	Chis permit	and
		-							
	1-5-3-								
		-							
				ld.m.m.				·····	-
į. <b>.</b>	A-814								
Flow [2]		Report	Report	MCED				Daily	· 24-Hr. Tota
Temperatu	re [3]	Report	Report	*F	••			Daily	Continuous
Total Res								-	
Chlorin	-	••				0.2	mg/1	Daily [5]	Grab
Duration ( Chlorin	or ation [4]	••						Monthly Repo	ort
Chlorinat	· •								
Frequen	cy [4]		*•			••		Monthly Repo	ort
	[1]	<u></u>					14-1	e 13 /	<u> </u>
	[2]	Flow may	be estim	lated by	y enginee	ring, cal	culation	5.	
	[3]	See Other	Require	ments.	Part III	of Perm	1+.		
	(0)			,					
	[4]							ged from any	
		day. Fre						two hours p d only be	)et
							<u></u>		
	[6]	Durada a da		-f ah l				<b>•</b> .	
	[5]	During di	scharge	or chi	orine bea	truk was	CEWALEI.		
	3	The disch	arge cha	11 not	C4000 67	caeciwa	Foam in	the receivin	
	L	The dias	anter ebe	11-001	eestois		the - out	<u></u>	
						*1	themda -		

- 2

Page 3 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990

2. During the period beginning on the effective date of this permit and lasting until the expiration date, the permittee is authorized to discharge from Outfall 100 - Miscellaneous Low Volume Bypass. Such discharge shall be limited and meniopered by the permittee as

	Parameter	Monthly Average	Daily Maximum LOBA	Honshly 0.05	Daily T <u>râkoac</u> i		Heasurement Frequency	Sample
	Ň	Bacana	Then - it have				Balla	<u>. 61 11 - 97 - 1</u>
	TSS			30	100	mg/1	Daily#	Grab
	011 & Grease			15	20	#g/	Daily*	Grab
15 Au			<u> </u>	ess than 6.0	<b>1</b> I	* ¹ 73	<u> </u>	<u> </u>
	· •							
			uticient to	o create a vi	LSIDIC I	11m or s	neen on the	

but prior to mixing with other wastewaters.

Page 4 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990

•

	7	Dund		فمعالمهمه					abda acenta	
				<b>.</b>	• • •		¢			
			POIL CIT & Y	Detty		HORLALY	Delly		11683UISEN 1115	29mb16
Para	aneter		Average	<u>Maximum</u>	<u>Units</u>	Average	Maximum	<u>Units</u>	Frequency	Type
Flow			Report	Report	HCD			/3	Week ly	24-Hr. Total
TSS			••			20	30	ng/l	Weekly	24-Hr. Comp.
		•								
		i	sampling :	is to be	conduc	ted daily	•			
		ь.	The discha	arge sha	11 not	cause exc	essive f	oam in	the receiving	5
			ANG SELLI		, ,					
		<u>و</u> ه	Samples to	<u>aken in</u>	complia	nce wirh	the moni	toring	Tequí Temente	

.

1

· \$

		Page 5 of 21 Permit No. IN 0000132									
	Ū.,										
			- <u>-</u>	A C. 11 11				1 P	. 1		
1.j., _{1.}				···, ····•	······································						
	<b>A</b>										
	T. Iron T. Copper		••	••		1.U 1.0	mg/l mg/l	Daily* Daily*	24-Hr. Comp 24-Hr. Comp		
<b>*</b>		Vester	" means	any wastewal	ter (includin	e chemi	cal clea	ning liquor	· ·		
					boiler cleani						
- \$		40 CFK	42 <u>3.12(</u>		<u>netai cleanin</u>	e waste	, <u>15 EO</u>	De CONSIDER	ea		
	£										
		b	ut prior	to mixing w	with other wa	stestre	abs.				

· · ·

. •

.

.

				Page 6 Permit	of 21 No. IN 0000132	2
<u>وي</u>	<u>F</u>					
Parameter	Monthly Average	Daily <u>Maximum</u> <u>Units</u>	Monthly <u>Average</u>	Daily <u>Maximum Units</u>	Measurement Frequency	Sample Type
Flow (MGD) BOD _S	Report	Report 	 30	 45 mg/1	Weekly Weekly	24-Hr. Total 8-Hr. Comp.
		1000 B=				
				CION IS NOT THE		
				<b>.</b> . <b>.</b>	in honora	

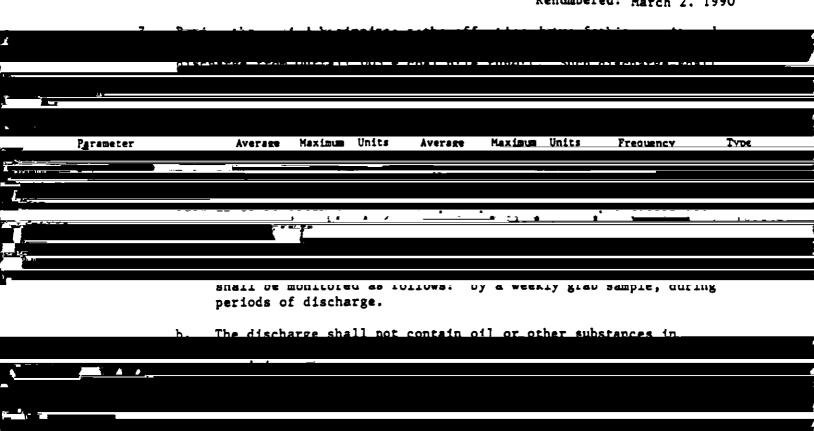
.

.

.

						t _a	P	age 7 o ermit N	f 21 o. IN 0000132	•••
<u> </u>							1			
, ,						يوهو الم				
·										
	Parameter		HONEN LY Average	Mally Maximum	Units	HONTELLY Average	Delly Maximum	Units	nessurement Frequency	Sampre Type
¥	199		P-2272_	A.c.					A 99 3.4	<b></b>
s.	011 & Grease		••			15	20	<u>ne/1</u>	2 X Monthly	Grab
<u>4</u> • -		Ъ.							the receiving of floating	
		с.	ine disch	arge sna	11 100	CONTAIN 0	LT OF OF	ner sub	stances in	
14	,		- bester	Ll be-to	ken at	e peint a		et ince	f the dischar	<b>*</b> •

.


.

.

•

Page 8 of 21

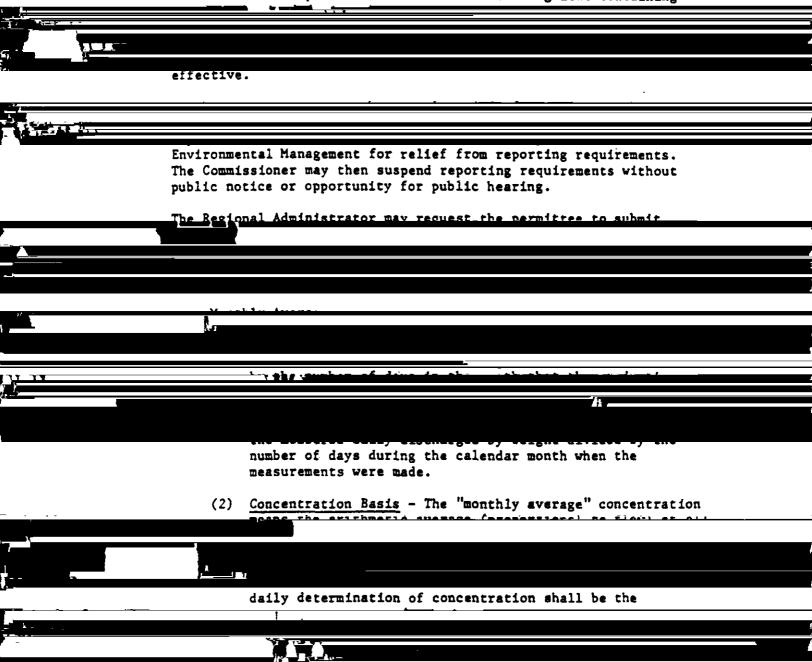
Renumbered: March 2, 1990



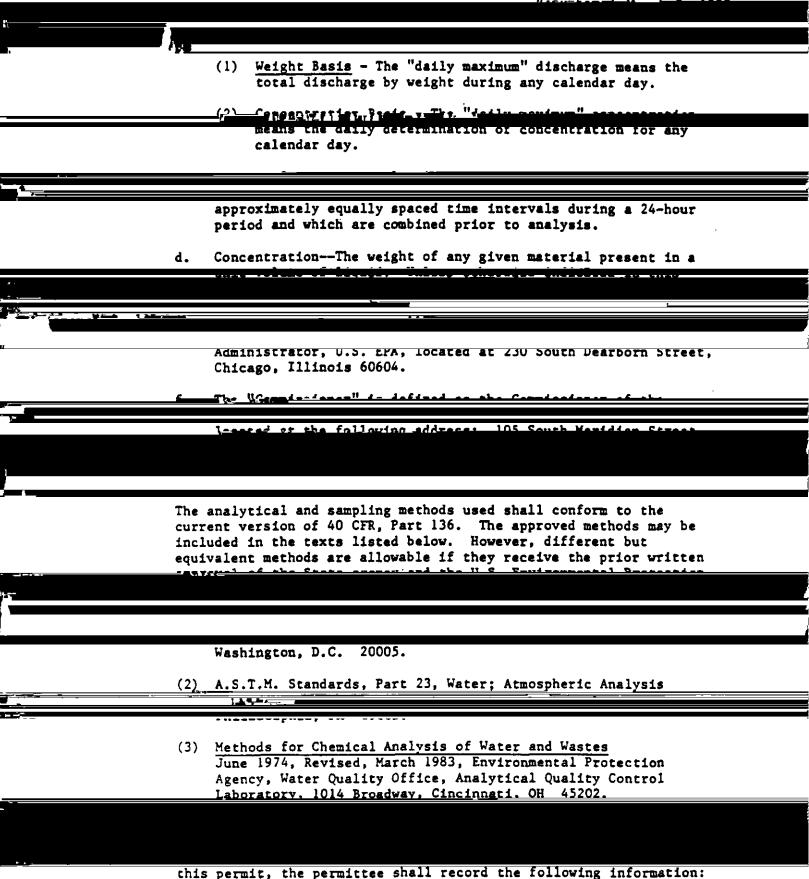
ċ

Page 9 of 21 Permit No. IN 0000132 Included: March 2, 1990

8. During the period beginning on the effective date of this modification and lasting until the expiration date, the permittee is Report Report MGD ------2 X Weekly 24-Hr. Tota Flow 100 mg/12 X Weekly 24-Hr. Comp TSS -----+ 30 -----15 20 Grab 011 & Grease •• mg/1 Monthly Chloride 6+ RECO - /1 A HEELA Sulfate 2 X Weekly [1] Report Report ng/1 24-Hr. Comp [2] - ---52 100 ag/l 2 X Weekly 24-Hr. Comp Fluoride Report [1] ---Report ng/l 2 X Weekly 24-Hr. Comp of these pollutants, after mixing of the effluent of Outfalls 401 and 001. This should be determined by actually measuring these concentrations at Outfall 001, after mixing of all wastestreams. No credit for net discharge will be considered for these pollutants. The pH shall not be less than 6.0 nor greater than 9.0. The pH **a**. <u>shall be monitored as follows: by a grab sample twice weekly.</u> but prior to mixing with other wastestreams. The permittee is strongly encouraged to exercise the option of c. AF ALA AFON an example the best of the second sec


### Permit No. IN 0000132 Renumbered: March 2, 1990

### B. MONITORING AND REPORTING




#### 2. Reporting

The permittee shall submit discharge monitoring reports (DMR-1 Form) to the Indiana Department of Environmental Management containing



Page 11 of 21 Permit No. IN 0000132



## Page 12 of 21

.

<u>r</u>			
	X 1 1		
<u>F</u>			a. The emeritres rechnicides of mernors asers end
			e. The results of all required analyses.
		6.	Additional Monitoring by Permittee
			If the permittee monitors any pollutant at the location(s) designated herein more frequently than required by this permit,
and the second			i construction and a second of the second seco
			The company of the provide the second s
			- 11 - conde and information - coulting from the monitoring activities
			minimum of three (3) years, or longer, if requested by the Regional
			Administrator or the Indiana Department of Environmental Management.
	с.	REO	PENING CLAUSE
-			17 1 D. FRA I she from the filler floor filler
<u>ñ</u>			
			ITHICTING INT FUE CONFLOX OF BREW GIDENBEDS!
		_	and the second s
			compliance, if necessary, after final promulgation and effectiveness of revised Indiana Water Quality Standards.

2

.

Page 13 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990

	PART II
1	FOR INDUSTRIAL FACILITIES
. *	SECTION A. GENERAL CONDITIONS
	1. Duty to Comply
÷	
	Pursuant to the Indiana Environmental Management Act, any person who violates
	<u>accordiations</u> (apliantediae continue 201 201 206 207, ap 208 at al.
2 <b>4</b>	
1	
	and "Upsets," Section B, Paragraph 3, nothing in this permit shall be
	construed to relieve the permittee from civil or criminal penalties for noncompliance.
<b>,</b>	] Durn to Mirigan
	The permittee shall take all reasonable steps to minimize or correct any
	4. Permit Actions
	This permit may be modified, revoked and reissued, or terminated for cause.
**********	
	. A change in any condition that requires either a temporary or

- 2

c. A change in any condition that requires either a temporary or permanent reduction or elimination of the authorized discharge.

Page 14 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990

revocation and reissuance, of termination, of (11) a notification of planned changes or anticipated noncompliance does not stay any permit condition.

5. Duty to Provide Information

The permittee shall furnish to the Commissioner, within a reasonable time, any information which the Commissioner may request to determine whether cause

permit.

6. Duty to Reapply

If the permittee wishes to continue an activity regulated by this permit after

,
· · · · · · · · · · · · · · · · · · ·

permit expiration date.

7. Transfers

This permit is nontransferable to any person except after notice to the Commissioner pursuant to Regulation 327 IAC 5-2-6(c). The Commissioner may

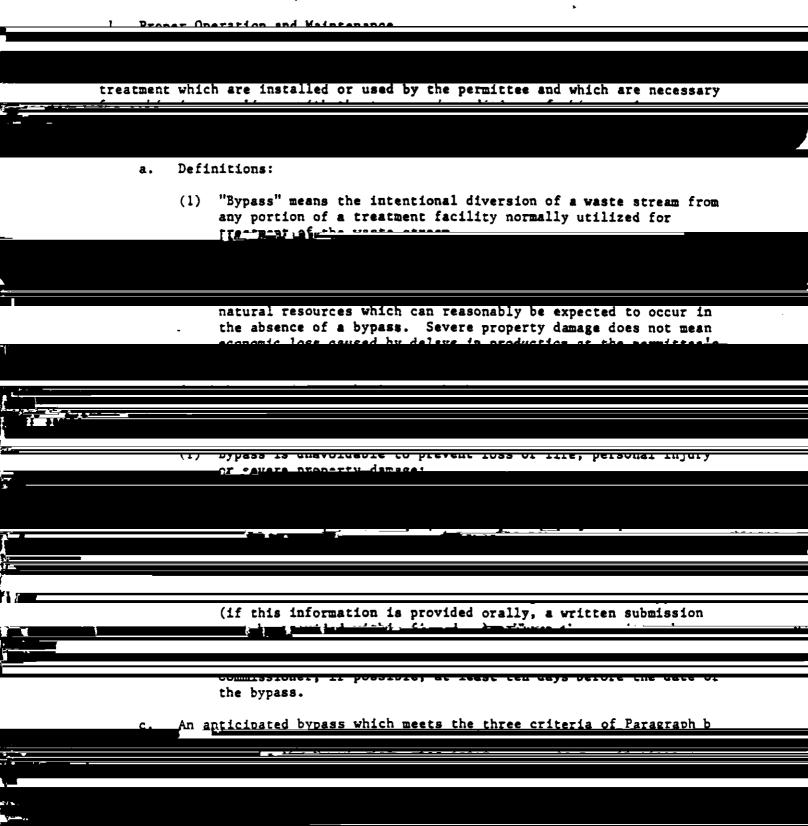
*	
i e	
8. Toxic Pollutants	
6. IOXIC FOILdCanes	
<u>etanderd or prohibition</u>	is established under Section 307(a) of the Clean
<u>ال</u>	

The permittee shall comply with effluent standards or prohibitions established

incorporate the requirement.

9. Containment Facilities

When cyanide or cyanogen compounds are used in any of the processes at this facility, the permittee shall provide approved facilities for the containment of any losses of these compounds in accordance with the requirements of Water Pollution Control Board Regulation 327 IAC 2-2-1.


	Page 15 of 21	
		•
<b>.</b>	L. 011 and Hazardous Substance Liability	
<u> </u>		
	12. Property Rights	
	12. riberty Aighta	
	The forwards of the county data not any set county states of any cost of	{
s		
-		
	The provisions of this powert are coverable and if any provision of this	
<u>ان ا</u>		
	14. Inspection and Entry	
	The permittee shall allow the Commissioner, or an authorized representative,	

apon the presentation of tretentiate and other documents as may be required by law, to:

<u> </u>		m. <u></u>	
		under the conditions of this permit:	
	_		
U	c.	Inspect at reasonable times any facilities, equipment (including	
<u>-</u>			6
		nermit compliance of as otherwise authorited by the ficin Water Act	
<u>in</u>			
4			

Page 16 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990

### SECTION B. MANAGEMENT REQUIREMENTS



Page 17 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990

٠

# 3. Upset Conditions

	a. Definition: "Unset" means an excentional incident in which there is	
	to the extent caused by operational error, improperty designed	
·	defance to an action brought for representations with such technology	
e		
f		
	(1) An upset occurred and the permittee has identified the specific	
<b>j -</b>	cause(s) of the upset if possible:	
	and	
	(3) The permittee complied with any remedial measures required	
	4. <u>Removed Substances</u>	
	Solids, sludges, filter backwash, or other pollutants removed from or	
· · · · · · · · · · · · · · · · · · ·	manner such as to prevent any pollutant from such materials from entering waters of the State and to be in compliance with all Indiana statutes and regulations relative to liquid and/or solid waste disposal.	
<b>▼·</b>		
	SECTION C. REPORTING REQUIREMENTS	
	1. Planned Changes in Facility or Discharge	
	Any anticipated facility expansions, production increases, or process modifications which will result in new, different, or increased discharges of pollutants must be reported by submission of a new NPDES application or, if such changes will not violate the effluent limitations specified in this	
· · · · · ·	POILUWINE SUCH ROLLES CHE DEIMAL MOY DE MUULLIEU LU IEVISE EAISLILE DULLULAIL	

limitations and/or to specify and limit any pollutants not previously limited.

Page	18	of	21	

Renumbered: March 2. 1990

	A M Jandone B Tradition	
, 1		
	AUDICUTURY RESULTS SUBLE OF TEDOTTED AT THE INTERVALS AND IN THE FORM	
}	Pororte of compliance or porcompliance with interim and final requirements	
<u>.</u>		,
<u> </u>		
	b. Violation of a maximum daily discharge limitation for any of the pollutants listed by the Commissioner in the permit to be reported within 24 hours; and	
	c. Any noncompliance which may pose a significant danger to human health or the environment.	
<b>P</b> á.	A written submission shall also be provided within 5 days of the time the	
·);		
		-
Ē		
	8. Other Information	
	The	

1

.

information.

Page 19 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990

#### 7. Changes in Discharge of Toxic Substances

The permittee shall notify the Commissioner as soon as it knows or has reason to believe:

a. That any activity has occurred or will occur which would result in <u>che discharge of any poilutant identified as toxic, pursuant to</u> <u>Section 302(s) of the Clean Water Act which is not limited in the</u>

One hundred micrograms per liter (100 ug/1);

milligram per liter (1 mg/1) for antimony;

(1) reaction the content content of a second

(4) The level established in Part III of the permit by the Commissioner.

intermediate or final product or byproduct any toxic pollutant which was not reported in the permit application.

#### 8. Signatory Requirements

- a. All reports required by the permit and other information requested by the Commissioner shall be signed and certified by a person described below or by a duly authorized representative of that person:
  - (2) For a partnership or sole proprietorship: by a general partner or the proprietor, respectively; or
  - (3) For a Federal, State, or local governmental body or an agency or political subdivision thereof: by either a principal executive officer or ranking elected official.

(1) The authorization is made in writing by a person described above.

		Page 20 of 21 Permit No. IN 0000132 Renumbered: March 2, 1990	
	(2) The authorization specifies either the second s	ther an individual or a position	
-	regulated facility or activity,	such as the position of plant a well field, superintendent, or	
-	Individual occupying a named po	BILIUM./, AUG	
	(3) Thomas horizonia submitted	to the Complexicon	
£			
	shall make the following certification	on:	
	"I certify under negative of law	that I have nersonally exemined	
		Atta Raw attacked at a	
	individuals immediately respons	ible for obtaining the	
	ing the		
	דרווכ פוות דשארדפטוחביורי י		
	9. Availability of Reports		
Bu	Board Regulation 327 IAC 12, all reports prepa	ired in accordance with the terms	
Ľ			
	10. Penalties for Falsification of Reports		
	The Indiana Environmental Management Act provi knowingly makes any false statement, represent		

The Indiana Environmental Management Act provides that any person who knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit, including monitoring reports or reports of compliance or

.

:

violation, or by both.

.

Page 21 of 21 Permit No. IN 0000132

## A. Thermal Effluent Requirements

÷

Ì۳.

-

	••••		
		As a result of approval of the Sid(a) demonstration study submitted in September 1976, no thermal effluent limitations are included in this permit. Indiana Water Quality Standards (IWQS) for temperature are	
	6		
		thermal discharge.	
		Alshousk it concerns that dissifteent sumbers of figh are implosed due to	
		No further submission of information on this subject is required at the time of reissuance of this permit.	
	c.	Chlorine Concentration	
	_	The total exposure time of TRC resulting from chlorination of the Content of the second two hours per day per separating	
-			
		·	
	D.	Intake Screen Wash	
		The shall be as iterbanes of isbair from totals converseshing	
		amounts sufficient to be unsightly or deleterious, or which will produce	
		There shall be no discharge of polychlorinated biphenyl (PCB) compounds such as those commonly used for transformer fluid, in accordance with	
	F/D	dilly Station Fil	

ł



### Briefing Memo September 22, 1989

\$

NIPSCO - Bailly Generating Station 246 Bailly Road Chesterton, Indiana 46304 NPDES Permit No. IN 0000132

Background

The NPDES permit for this facility was renewed September 29, 1988, and

	company between Air Products and Chemicals, Inc., and Mitsubishi Heavy
	- -
	Two wastestreams will be generated by this operation: sanitary wastewater
	and process wastewater from the scrubber itself. The sanitary wastewater will
	be discharged to the existing NIPSCO sanitary wastewater treatment plant (STP)
	An and the All and the California to a strand the set of
	characteristically high in TSS and TDS. Plans are to discharge this
	wastestream to the cooling wastestream (Outfall 001) for mixing prior to
	TRATTICI ATT WALK AND RESERVE AS SWILLS AND AND AREALERS FOR THE THE DRA
	effluent between the Unit 8 air preheater and the electrostatic precipitator
	(FCE) where the veter would be even or the resultant estide collected
1	
•	
	For the process dependent shows the modification is proposed for the

.

The permit is being modified to include a new Outfall 401 for the discharge of the treated AFGD process wastewater to the cooling water wastestream prior to its ultimate discharge to Lake Michigan. Effluent limitations are proposed for TSS, oil and grease, chloride, TDS, sulfate, fluoride and pH. A new page 1 is included to reflect this modification. A

ſ	
	Pollutants Mo. Ave. Daily Max.
À	
*	
-	concentrations as predicted by the permittee. This change has come about due to the ongoing activity surrounding the revisions to the Indiana Water Quality
	concentrations as predicted by the permittee. This change has come about due to the ongoing activity surrounding the revisions to the Indiana Water Quality
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality
	concentrations as predicted by the permittee. This change has come about due to the ongoing activity surrounding the revisions to the Indiana Water Ouality Waters" (327 IAC 2-1) would apply. The current proposal for revision of
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality Waters" (327 IAC 2-1) would apply. The current proposal for revision of
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality Waters" (327 IAC 2-1) would apply. The current proposal for revision of
	to the ongoing activity surrounding the revisions to the Indiana Water Ouality Waters" (327 IAC 2-1) would apply. The current proposal for revision of

.

÷

	-3-
All I	
	Expiration Date
	This modification will expire August 31, 1993, as with the current
	permit.
	N AL A LAND CARDINA CAR
	0813B 10/16/89
۶-	Prot Public Notice Addendum 12-4-29 M W Stanifet Revised 3 1-00 MWS
_	During the public notice period, comment letters were received from the
V	1. pH monitoring at outfalls 301 and 401 (Pages 7 and 9); The permittee's requires in reasonable. Redundant pH compliant is not reconcern for outfall.
	2. Sampling frequency for dissolved solids at 401 (Page 9); the permittee's
Ĩ	
	operation, if such results demonstrate adequate compliance. Such modification would require public notice.
	401 (page 9). IDEA Delleves that the permit is clear that the limitations for
	the various dissolved solids and pH are only applicable after mixing with other wastestreams and are not applicable at the point of discharge to the
	4. As with comment 2, IDEM will entertain a request to review (and reduce) monitoring frequencies after a period of substantial compliance has been
	demonstrated. Also, as with the other previous responses, no change has been made in the permit.
	5. The permit (page 9) has been revised to clarify that sampling for the parameters prescribed at outfall 401 is required only during periods of
	5 IDEM accents NIPSCO's comments reserding the experimental nature of the
	γι τ γ τφ τ τ ττ τ τ τ τ τ τ τ τ τ τ τ τ τ

	-4-	
	results of the initial test operational period regarding this matter prior to	
A	(1.5 mg/1) was incorrect. The permit fimitation of 1.4 mg/1 is the correct value. The Eccordance with agency policy to maintain continuity of the records, the Briefing Memo as drafted has not been altered.	
	U.S.EPA Region 5 submitted a comment letter dated Jan. 23, 1990 which contained three comments on the draft permit. The Region 5 comments and IDEM responses are summarized as follows:	
•. <u>d</u> e a an-		
	propaga has been reviewed for consistency with the perdestruction previsional	
i.	the discharge on Lake mentan.	
10° - 10 - 200 10	While this subject was touched upon in the original Briefing Memo, it	
	quality of Lake Michigan, so long as the effleunt limitations are consistently	
) 		
a.)	2. Region 5 commented that the original Briefing Memo "did not discuss the	
	Some recarculated accordingly. IDEA contents that since the permit intentionally does not provide for net limitations, or credit for quantities of these same pollutants which are present in the intake or from other sources	
	3. Region 5 noted that the monthly average concentration limit for TDS should be 344 mg/l as stated in the Briefing Memo rather than 394 mg/l. This error has been corrected.	

the in

7.93 T0 vb284 Tr 61.47 Tr 26.7verege

.

÷

(1.3 to 3928.96353612DEtvereae)