

Illinois Environmental Protection Agency Bureau of Air 1021 N. Grand Ave., East P.O. Box 19276 Springfield, IL 62794-9276 June 2000

IEPA/BOA/00-008



# Illinois Annual Air Quality Report 1999

Illinois Environmental Protection Agency Bureau of Air

Cover: The cover depicts the new Air Quality Index (AQI) which will be utilized in Cover73Tw tarcorrespond, 20colors anuprovid-15below.0.115195.75 0 -1D

| С | 0 | v |
|---|---|---|
| - | j |   |
|   |   |   |
|   |   |   |
| С |   |   |
|   |   |   |
| С |   |   |
|   |   |   |

-

# ILLINOIS ANNUAL AIR QUALITY REPORT 1999

Illinois Environmental Protection Agency Bureau of Air 1021 North Grand Avenue, East P.O. Box 19276 Springfield, IL 62794-9276

Printed on recycled paper

## To Obtain Additional Information

For additional information on air pollution, please call 217-782-7326, or write to:

Illinois Environmental Protection Agency Bureau of Air 1021 N. Grand Ave., East PO Box 19276 Springfield, IL 62794-9276

## A MESSAGE FROM THE DIRECTOR

Since 1970, the Clean Air Program at the Illinois Environmental Protection Agency (EPA) has been working to combat air pollution. To comply with the federal Clean Air Act and its amendments, the Agency issues permits to air pollution sources and works to

# Illinois Annual Air Quality Report 1999

## Contents

| A Message from the Director | iii |
|-----------------------------|-----|
| Tables                      | vi  |
| Figures                     | vii |
| Executive Summary           |     |

## TABLES

| Table 1: | Summary of National and Illinois Ambient Air Quality Standards                             | 6    |
|----------|--------------------------------------------------------------------------------------------|------|
| Table 2: | Illinois Air Pollution Episode Levels                                                      | 7    |
| Table 3: | PSI Descriptor Categories and Health Effects                                               | .16  |
| Table 4: | PSI Sectors in Illinois                                                                    | . 18 |
| Table 5: | Distribution of Volatile Organic Material Emissions – 1999                                 | . 22 |
| Table 6: | Distribution of Particulate Matter Emissions - 1999                                        | .23  |
| Table 7: | Distribution of Carbon Monoxide Emissions - 1999                                           | .24  |
| Table 8: | Distribution of Sulfur Dioxide Emissions - 1999                                            | .25  |
| Table 9: | Distribution of Nitrogen Oxide Emissions - 1999                                            | .26  |
| Table A1 | : Illinois Ambient Air Monitoring Network<br>Directory of Cooperating Agencies in Illinois | . 28 |
| Table A2 | 2: 1999 Non-Continuous Sampling Schedule                                                   | . 29 |
| Table A3 | : Distribution of Air Monitoring Instruments                                               | .31  |

## FIGURES

| Figure 1:  | Average 1-Hour Ozone Maximum                        | .9 |
|------------|-----------------------------------------------------|----|
| Figure 2:  | Statewide Ozone Exceedance Day Trend                | .9 |
| Figure 3:  | Particulate Matter Annual Trends                    | 10 |
| Figure 4:  | Particulate Matter 24-hr Trends                     | 10 |
| Figure 5:  | Carbon Monoxide Trends                              | 11 |
| Figure 6:  | Sulfur Dioxide 24-hr Trends                         | 11 |
| Figure 7:  | Nitrogen Dioxide Annual Trend                       | 12 |
| Figure 8:  | Lead Maximum Quarterly Trend                        | 12 |
| Figure 9:  | Pollutant Standards Index Summaries by Sector       | 19 |
| Figure 10: | Estimated Volatile Organic Material Emissions Trend | 22 |
| Figure 11: | Estimated Particulate Emissions Trend               | 23 |
| Figure 12: | Estimated Carbon Monoxide Emissions Trend           | 24 |
| Figure 13: | Estimated Sulfur Dioxide Emissions Trend            | 25 |
| Figure 14: | Estimated Nitrogen Oxide Emissions Trend            | 26 |

#### 1999 EXECUTIVE SUMMARY

This report presents a summary of air quality data collected throughout the State of Illinois during the calendar year - 1999. Data is presented for the six criteria pollutants (those for which air quality standards have been developed - particulate matter ( $PM_{10}$  and  $PM_{2.5}$ ), ozone, sulfur dioxide, nitrogen dioxide, carbon monoxide, and lead) along with some heavy metals, nitrates, sulfates, and volatile organic compounds. Monitoring was conducted at over 100 different site locations collecting data from more than 200 instruments.

In terms of the Pollutant Standards Index (PSI) air quality during 1999 was either good or moderate more than 99% of the time throughout Illinois. There were four days Statewide which exceeded an air quality standard for any pollutant – all four for ozone. These exceedances occurred in Jersey (3), and Madison (1) Counties (ozone). Air quality trends for the criteria pollutants are continuing to show downward trends or stable trends well below the level of the standards.

In 1999 monitoring was initiated for  $PM_{2.5}$  using Federal Reference Method (FRM) monitors at 25 locations Statewide as the first phase of fine particulate (less than 2.5 microns) sampling. The rest of this network will be implemented in 2000.

Stationary point source emission data has again been included. The data in the report reflects information contained in the Emission Inventory System (EIS) as of December 31, 1999. Emission estimates are for the calendar year 1999 and are for the pollutants: particulate matter, volatile organic material, sulfur dioxide, nitrogen oxides and carbon monoxide. Emission trends of these pollutants has been given for the years 1981 to the present. Emissions reported with the Annual Emissions Report have been provided starting with 1992. In general there has been a trend toward decreasing emissions over this time period.

## **SECTION 1:**

Alterations in airway resistance can occur, especially to those with respiratory diseases (asthma, bronchitis, emphysema). These effects may occur in sensitive individuals, as well as in healthy exercising persons, at short-term ozone concentrations between 0.15 and 0.25 ppm.

Ozone exposure increases the sensitivity of the lung to bronchoconstrictive agents such as histamine, acetylcholine and allergens, as well as increasing the individual's susceptibility to bacterial infection. Simultaneous exposure to ozone and  $SO_2$  can produce larger changes in pulmonary function than exposure to either pollutant alone.

Peroxyacetylnitrate (PAN) is an eye irritant, and its effects often occur in conjunction with the effects of ozone.

Two characteristics of ozone and oxidant exposures should be cited:

- Ozone itself is a primary cause of most of the health effects reported in toxicological and experimental human studies and the evidence for attributing many health effects to this substance alone is very compelling.
- The complex of atmospheric photochemical substances is known to produce health effects, some of which are not attributable to pure ozone but may be caused by other photochemical substances in combination with ozone.

#### **Particulate Matter (PM)**

Not all air pollutants are in the gaseous form. Small solid particles and liquid droplets, collectively called particulates or aerosols, are also present in the air in great numbers and may constitute a pollution problem. Particulates entering the atmosphere differ in size and chemical composition. The effects of particulates on health and welfare are directly related to their size and chemical composition.

Particulate matter in the atmosphere consists of solids, liquids, and liquids-solids in combination. Suspended particulates generally refer to particles less than 100 micrometers in diameter (human hair is typically 100 micrometers thick). Particles larger than 100 micrometers will settle out of the

air under the influence of gravity in a short period of time.

Typical sources emitting particles into the atmosphere are combustion of fossil fuels (ash and soot), industrial processes (metals, fibers, etc.), fugitive dust (wind and mechanical erosion of local soil) and photochemically produced particles (complex chain reactions between sunlight and gaseous pollutants). Combustion and photochemical products tend to be smaller in size (less than 1 micrometer); fugitive dust and industrial products are typically larger in size (greater than 1 micrometer).

Particles which cause the most health and visibility difficulties are those less than 1.0 micrometer in size. These particles are also the most difficult to reduce in numbers by the various industrial removal techniques. Rainfall accounts for the major removal of these smaller particles from the air.

One of the major problems associated with high concentrations of particulates is that the interaction between the particles, sunlight and atmospheric moisture can potentially result in the climatic effects and diminished visibility (haze). Particles play a key role in the formation of clouds, and emissions of large numbers of particles can, in some instances, result in local increases in cloud formation and, possibly, precipitation. Particles in the size range of 0.1 to 1.0 micrometers are the most efficient in scattering visible light (wave length 0.4 to 0.7 micrometers) thereby reducing visibility. Particles combined with high humidity can result in the formation of haze which can cause hazardous conditions for the operation of motor vehicles and aircraft.

Particulate pollutants enter the human body by way of the respiratory system and their most immediate effects are upon this system. The size of the particle determines its depth of penetration into the respiratory system. Particles over 5 micrometers are generally deposited in the nose and throat. Those that do penetrate deeper in the respiratory system to the air ducts (bronchi) are often removed by ciliary action. Particles ranging in size from 0.5 - 5.0 micrometers in diameter can be deposited in the bronchi, with few reaching the air sacs (alveoli). Most particles deposited in the bronchi are removed by the cilia within hours. Particles less than 0.5 micrometer in diameter reach and may settle in the alveoli. The removal of particles from the alveoli is much less rapid and complete than from the larger passages. Some of the particles retained in the alveoli are absorbed into the blood.

Besides particulate size, the oxidation state, chemical composition, concentration and length of time in the respiratory system contribute to the health effects of particulates. Particulates have been associated with increased respiratory diseases (asthma, bronchitis, emphysema), cardiopulmonary disease (heart attack) and cancer.

Plant surfaces and growth rates may be adversely affected by particulate matter. Particulate air pollution also causes a wide range of damage to materials including corrosion of metals and electrical equipment and the soiling of textiles and buildings.

#### Sulfur Dioxide (SO<sub>2</sub>)

Sulfur dioxide is an atmospheric pollutant which results from combustion processes (mainly burning of fossil fuels containing sulfur compounds), refining of petroleum, manufacture of sulfuric acid and smelting of ores containing sulfur. Reduction of sulfur dioxide pollution levels can generally be achieved through the use of low sulfur content fuels or the use of chemical sulfur removal systems.

Once in the atmosphere some sulfur dioxide can be oxidized (either photochemically or in the presence of a catalyst) to  $SO_3$  (sulfur trioxide). In the presence of water vapor,  $SO_3$  is readily converted to sulfuric acid mist. Other basic oxides combine with  $SO_3$  to form sulfate aerosols. Sulfuric acid droplets and other sulfates are thought to account for about 5 to 20 percent of the total suspended particulate matter in urban air. These compounds can be transported large distances and come back to earth as a major constituent of acid precipitation. Many of the resultant health problems attributed to  $SO_2$  may be a result of the oxidation of  $SO_2$  to other compounds. The effects of  $SO_2$  on health are irritation and inflammation of tissue that it directly contacts. Inhalation of  $SO_2$  causes bronchial constriction resulting in an increased resistance to air flow, reduction of air volume and an increase of respiratory rate and heart rate.

SO<sub>2</sub> can exacerbate pre-existing respiratory diseases (asthma, bronchitis, emphysema). The enhancement (synergism) by particulate matter of the toxic response to sulfur dioxide has been observed under conditions which would promote the conversion of sulfur dioxide to sulfuric acid. The degree of enhancement is related to the concentration of particulate matter. A twofold to threefold increase of the irritant response to sulfur dioxide is observed in the presence of particulate matter capable of oxidizing sulfur dioxide to sulfur dioxide to sulfur acid.

Sulfuric acid ( $H_2SO_4$ ) inhalation causes an increase in the respiratory system's mucous secretions, which reduces the system's ability to remove particulates via mucociliary clearance. This can result in an increase incidence of respiratory infection.

#### Carbon Monoxide (CO)

The major source of carbon monoxide (CO) is motor vehicles. The USEPA has kept under its jurisdiction the regulation of emission control equipment on new motor vehicles while the State's responsibility for reducing excessive ambient carbon monoxide levels is exercised by developing transportation plans for congested urban areas.

The toxic effects of high concentrations of CO on the body are well known. Carbon monoxide is absorbed by the lungs and reacts with hemoglobin (the oxygen carrying molecule in the blood) to form carboxyhemoglobin (COHb). This reaction reduces the oxygen carrying capacity of blood because the affinity of hemoglobin for CO is over 200 times that for oxygen. The higher the percentage of hemoglobin bound up in the form of carboxyhemoglobin, the more serious is the health effect.

The level of COHb in the blood is directly related to the CO concentration of the inhaled air. For a

given ambient air CO concentration, the COHb level in the blood will reach an equilibrium concentration after a sufficient time period. This equilibrium COHb level will be maintained in the blood as long as the ambient air CO level remains unchanged. However, the COHb level will slowly change in the same direction as the CO concentration of the ambient air as a new equilibrium of CO in the blood is established.

The lowest CO concentrations shown to produce adverse health effects result in aggravation of cardiovascular disease. Studies demonstrate that these concentrations have resulted in decreased exercise time before the onset of pain in the chest and extremities of individuals with heart or circulatory disease. Slightly higher CO levels have been associated with decreases in vigilance, the ability to discriminate time intervals and exercise performance.

Evidence also exists indicating a possible relationship between CO and heart attacks, the development of cardiovascular disease and fetal development.

Studies on the existing ambient levels of CO do not indicate any adverse effects on vegetation, materials, or other aspects of human welfare.

#### Nitrogen Dioxide (NO<sub>2</sub>)

Nitrogen gas  $(N_2)$  is an abundant and inert gas which makes up almost 80 percent of the earth's atmosphere. In this form, it is harmless to man and essential to plant metabolism. Due to its abundance in the air, it is a frequent reactant in many combustion processes. When combustion temperatures are extremely high, as in the burning of coal, oil, gas and in automobile engines, atmospheric nitrogen  $(N_2)$  may combine with molecular oxygen  $(O_2)$  to form various oxides of nitrogen  $(NO_x)$ . Of these, nitric oxide (NO) and nitrogen dioxide (NO<sub>2</sub>) are the most important contributors to air pollution;  $NO_x$  generally is used to represent these. Nitric oxide (NO) is a colorless and odorless gas. It is the primary form of  $NO_X$  resulting from the combustion process.  $NO_x$  contributes to haze and visibility reduction.  $NO_x$  is also known to cause deterioration and fading of certain fabrics and damage to vegetation. Depending on concentration and extent of exposure, plants may suffer leaf lesions and reduced crop yield.

Sensitivity of plants to nitrogen oxides depends on a variety of factors including species, time of day, light, stage of maturity and the presence or absence of other air pollutants such as sulfur dioxide and ozone.

There is a lack of strong evidence associating health effects with most nitrogen oxide compounds. NO<sub>2</sub>, a secondary derivative of atmospheric nitric oxide, however, has been clearly established as exerting detrimental effects on human health and welfare.

 $NO_2$  can cause an impairment of dark adaptation at concentrations as low as 0.07 ppm.  $NO_2$  can cause an increase in airway resistance, an increase in respiratory rate, an increase in sensitivity to bronchoconstrictors, a decrease in lung compliance and an enhanced susceptibility to respiratory infections.  $NO_2$  is a deep lung irritant capable of producing pulmonary edema if inhaled in sufficient concentrations. When  $NO_2$  is inhaled in concentrations with other pollutants, the effects are additive.

 $NO_x$  may also react with water to form corrosive nitric acids, a major component of acid precipitation. Additionally,  $NO_x$  and various other pollutants (e.g., hydrocarbons) may react in en

- 2 () 1.1417 Tw (nce associat health an/F4Tc (2) Tj

Lead is a stable compound which persists and accumulates both in the environment and in the human body. Lead enters the human body through ingestion and inhalation with consequent absorption into the blood stream and distribution to all body tissues. Clinical, epidemiological and toxicological studies have demonstrated exposure to lead adversely affects human health.

Low level lead exposure has been found to interfere with specific enzyme systems and blood production. Kidney and neurological cell damage has also been associated with lead exposure. Animal studies have demonstrated that lead can contribute to reduced fertility and birth defects. Children are the population segment most sensitive to many of lead's adverse effects.

Other serious potential effects from lead exposure are behavioral. Brain damage has been well documented in cases of severe lead poisoning in children. Restlessness, headaches, tremors and general symptoms of mental retardation have been noted. The brain seems to be particularly sensitive to lead poisoning, yet it is unclear whether low level exposure will result in brain dysfunction. Although evidence exists which indicates that children with above-normal blood head levels are more likely to demonstrate poor academic performance, the studies remain inconclusive.

# Illinois Ambient Air Quality Standards and Episode Levels

Γ

|                                                                                                                                                                                                                                                                     |                                             | Standa                                         | ard                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------|------------------------------------|
| Pollutant                                                                                                                                                                                                                                                           | Averaging Time                              | Primary                                        | Secondary                          |
| Standard units are micrograms per cubic meter (ug/m <sup>3</sup> ) and parts per million (ppm)                                                                                                                                                                      |                                             |                                                |                                    |
| Particulate Matter<br>10 micrometers (PM <sub>10</sub> )                                                                                                                                                                                                            | Annual Arithmetic Mean<br>24-hour           | 50 ug/m <sup>3</sup><br>150 ug/m <sup>3</sup>  | Same as Primary<br>Same as Primary |
| Particulate Matter<br>2.5 micrometers (PM <sub>2.5</sub> )                                                                                                                                                                                                          | Annual Arithmetic Mean<br>24-hour           | 15.0 ug/m <sup>3</sup><br>65 ug/m <sup>3</sup> | Same as Primary<br>Same as Primary |
| Sulfur dioxide                                                                                                                                                                                                                                                      | Annual Arithmetic Mean<br>24-hour<br>3-hour | 0.03 ppm<br>0.14 ppm<br>None                   | None<br>None<br>0.5 ppm            |
| Carbon Monoxide                                                                                                                                                                                                                                                     | 1-hour<br>8-hour                            | 35 ppm<br>9 ppm                                | Same as Primary<br>Same as Primary |
| Ozone                                                                                                                                                                                                                                                               | 1-hour/day<br>8-hour/day                    | 0.12 ppm<br>0.08 ppm                           | Same as Primary<br>Same as Primary |
| Nitrogen Dioxide                                                                                                                                                                                                                                                    | Annual Arithmetic Mean                      | 0.053 ppm                                      | Same as Primary                    |
| Lead                                                                                                                                                                                                                                                                | Quarterly Arithmetic Mean                   | 1.5 ug/m <sup>3</sup>                          | Same as Primary                    |
| All $PM_{10}$ and $PM_{2.5}$ standards are referenced to local conditions of temperature and pressure rather than standard conditrions (760 mm and 25 deg C).<br>Note: The State of Illinois has not adopted the $PM_{2.5}$ or 8-hour ozone standards at this time. |                                             |                                                |                                    |

#### Table 1: Summary of National and Illinois Ambient Air Quality Standards

| Table 2: Illinois Air Pollution Episode Levels |          |                 |                 |                 |
|------------------------------------------------|----------|-----------------|-----------------|-----------------|
| Pollutant                                      | Advisory | Yellow alert    | Red Alert       | Emergency       |
| Particulate Matter                             | 2-hour   | 24-hour         | 24-hour         | 24-hour         |
| micrograms per cubic meter                     | 420      | 350             | 420             | 500             |
| Sulfur Dioxide                                 | 2-hour   | 4-hour          | 4-hour          | 4-hour          |
| parts per million                              | 0.30     | 0.30            | 0.35            | 0.40            |
| Carbon Monoxide                                | 2-hour   | 8-hour          | 8-hour          | 8-hour          |
| parts per million                              | 30       | 15              | 30              | 40              |
| Nitrogen Dioxide                               | 2-hour   | 1-hour          | 1-hour          | 1-hour          |
| parts per million                              | 0.40     | 0.60            | 1.20            | 1.60            |
|                                                |          | or              | or              | or              |
|                                                |          | 24-hour<br>0.15 | 24-hour<br>0.30 | 24-hour<br>0.40 |
| <b>Ozone</b> parts per million                 | 1-hour   | 1-hour          | 1-hour          | 1-hour          |
|                                                | 0.12     | 0.20            | 0.30            | 0.50            |

## WIDE SUMMARY OF AIR QUALITY FOR 1999

ations during at season" and at at all 42 sites. 999.

concentrations (ppm) 1-hour 1999. This trend is generally flat with the conducive years of 1991 and 1995 standing out.

Overall, Illinois's weather was slightly above normal in terms of meteorological conditions favorable to ozone formation and transport in the Chicago area in 1999 and near normal downstate. of the annual standard. The maximum 24-hour averages ranged from  $36.1 \text{ ug/m}^3$  to  $55.9 \text{ ug/m}^3$ . All PM<sub>2.5</sub> monitoring sites except two background sites recorded maximum 24-hour averages above 40 ug/m<sup>3</sup>.

#### CARBON MONOXIDE

There were no exceedances of either the 1-hour primary standard of 35 ppm or the 8-hour primary standard of 9 ppm in 1999. The highest 1-hour average was 7.9 ppm recorded in Peoria. The highest 8-hour average was 5.4 ppm also recorded in Peoria. South Chicago, especially for iron and manganese. The highest 24-hour average for arsenic was 0.033 ug/m<sup>3</sup> measured in East St. Louis. The highest annual average of 0.003 ug/m<sup>3</sup> was recorded at the same site. There were no measurable beryllium 24hour averages recorded statewide. East St. Louis recorded the highest cadmium concentrations with a maximum 24-hour average of 0.134  $ug/m^3$  and the highest annual average of 0.008  $ug/m^3$  . The highest 24-hour chromium average was 0.030 ug/m<sup>3</sup> recorded at Maywood. Maywood had the highest annual average at 0.011 ug/m<sup>3</sup>. The highest iron and manganese values were recorded in the industrial areas of Granite City and South Chicago and the high traffic areas of Chicago - Cermak and Maywood. The highest 24-hour average for nickel was recorded at Wood River with a value of 0.072 ug/m<sup>3</sup> record

annua871

Г

| Table 3: PSI Descriptor Categories and Health Effects |                     |  |
|-------------------------------------------------------|---------------------|--|
| PSI Range                                             | Descriptor Category |  |
| 0-50                                                  |                     |  |

Environmental Control and the Chicago Department of the Environment.

If the PSI subindex for any pollutant in any sector should reach or exceed the Unhealthful (or any higher) category late in the afternoon or on weekends when the PSI is not published, the IEPA puts out a special bulletin on the Illinois Weatherwire. If data for one of the pollutants used in computing PSI is missing, the PSI is computed using the data available, ignoring the missing datum. It occasionally happens that two pollutants have the same subindex; in such cases there are two critical pollutants.

#### 1999 Illinois PSI Summary

Air quality was in the "Good" category most often in 1999. All Sectors had a higher frequency of "Good" than "Moderate" and "Unhealthful". All sectors except Metro-East had 80% or more of the days in the "Good" category. Statewide there were 2 occurrences of Unhealthful air quality in one or more sectors in 1999 compared with 4 in 1998 and 5 in 1997. The pollutant breakdown for unhealthfuls were all 2 due to ozone in the Metro-East (4 additional Unhealthful days occurred in Jersey County, not a PSI Sector). **Figure 9** presents the PSI statistics for each sector. The pie chart shows the percent of time each sector was in a particular category. In addition to Unhealthful PSI days, there were four occurrences (three days) of the first stage episode conditions (Advisory) being triggered for ozone. Advisories were declared for two days in the Metro-East Sector and two days in Jersey County. An Advisory is declared when reached ozone levels have unhealthful concentrations on a particular day and meteorological conditions are such that these unhealthful levels are expected again the next day. The Advisories are issued for the entire Air Quality Control Region affected by the high ozone levels. The days for which advisories were issued were September 2 and September 4 in the Metro-East and July 25 and September 2 in Jersey County.

| Table 4: PSI Sectors in Illinois                        |                                                                                                                                     |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Chicago Metropolitan Area:</b><br>Lake County Sector | Lake County only                                                                                                                    |  |
| North and West Suburbs Sector                           | Parts of Cook, Du Page, and Mc Henry Counties north of I-<br>290 (the Eisenhower Expressway) and<br>outside of Chicago city limits. |  |
| Chicago Sector                                          | All areas within the city limits of Chicago                                                                                         |  |



Illinois Annual Air quality Report 1999

PARTICULATE MATTER





**SULFUR DIOXIDE** 



#### NITROGEN OXIDES





### TABLE A1

#### DIRECTORY OF REGIONAL AIR POLLUTION AGENCIES

Chicago Department of the Environment 30 N. LaSalle Street, 25<sup>th</sup> Floor Chicago, Illinois 60602 312/744-7606 Fax 312/744-6451

Cook County Department of Environmental Control 1500 Maybrook Drive, Room 202 Maywood, Illinois 60153 708/865-6165 Fax 708/865-6361

Indiana Dept. of Environmental Management 100 N. Senate Indianapolis, Indiana 46204 317/232-8611 Fax 317/233-6647

Iowa Dept. of Natural Resources Wallace State Office Building 900 E. Grand Ave. Des Moines, Iowa 50319-0034 515/281-5145 Fax 515/281-8895 Kentucky Dept. for Environmental Protection Air Quality Division 803 Schenkel Lane Frankfort, Kentucky 40601 502/573-3382 Fax 502/573-3787

Michigan Dept. of Natural Resources Air Quality Division P.O. Box 30260 Lansing, Michigan 48909 517/373-7023 Fax 517/373-1265

Missouri Dept. of Natural Resources Division of Environmental Quality P.O. Box 176 205 Jefferson Street Jefferson City, Missouri 65102 573/751-4817 Fax 573/751-2706

Wisconsin Dept. of Natural Resources Bureau of Air Management P.O. Box 7921 101 S. Webster Madison, Wisconsin 53707 608/266-7718 Fax 608/267-0560


# Table A3

# DISTRIBUTION OF AIR MONITORING INSTRUMENTS

PAMS NAMS SLAMS SPMS TOTAL

|           | _                                              |
|-----------|------------------------------------------------|
|           | (mint                                          |
| - CLAYTON | Lead III                                       |
| 10000     | The states                                     |
| 11111     | 1111111                                        |
| 11111     | <b>(</b> [ ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] |
| 11110     | × gara                                         |

# AIR QUALITY CONTROL REGIONS

**NOX** 

|                                        | <b>A</b> |            |  |
|----------------------------------------|----------|------------|--|
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
| •                                      |          |            |  |
|                                        |          |            |  |
| 1                                      |          |            |  |
|                                        |          |            |  |
| -                                      |          |            |  |
|                                        |          | L          |  |
|                                        |          |            |  |
| ٠ <u>۰</u>                             |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
| — <b>A</b>                             |          |            |  |
|                                        |          |            |  |
| <u> </u>                               |          |            |  |
|                                        | <br>_    |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
| <u> </u>                               |          | <u>د</u> . |  |
|                                        |          |            |  |
|                                        |          |            |  |
| - <u></u>                              |          |            |  |
|                                        |          |            |  |
| •                                      |          |            |  |
| · ····                                 |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
| Ý                                      |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
| ······································ |          |            |  |
| ÷                                      |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
|                                        |          |            |  |
| 4 1                                    |          |            |  |
| ·····                                  |          |            |  |



Statewide Map of Air Monitoring Locations

|                        |                      | Table A4            |     |             |                                         |
|------------------------|----------------------|---------------------|-----|-------------|-----------------------------------------|
|                        | SIT                  | 1999<br>E DIRECTORY |     |             |                                         |
| CITY NAME<br>AIRS CODE | ADDRESS              | OWNER/<br>OPERATOR  | UTM | COORD. (km) | EQUIPMENT                               |
| 65 BURLINGTON          | - KEOKUK INTERSTAT   | E (IA - IL)         |     |             |                                         |
| PEORIA COUNTY          |                      |                     |     |             |                                         |
| Peoria                 | Fire Station #8      | III. EPA            | N.  | 4507.050    | NAMS - SO <sub>2</sub> , O <sub>3</sub> |
| (1430024)              | MacArthur & Hurlburt |                     | E.  | 279.679     | SPMS - WS/WD                            |
| Peoria                 | Commercial Building  | III. EPA            | N.  | 4508.585    | SLAMS - CO                              |
| (1430036)              | 1005 N. University   |                     | E.  | 279.196     |                                         |
| Peoria                 | City Office Building | III. EPA            | N.  | 4508.197    | NAMS - PM <sub>10</sub>                 |
| (1430037)              | 613 N.E. Jefferson   |                     | E.  | 2072003     | 37)20720037)20720037)20720037)          |

|                |                          | 1000                        |     |             |                           |
|----------------|--------------------------|-----------------------------|-----|-------------|---------------------------|
|                |                          | 1999<br>DIDECTODY           |     |             |                           |
|                | SITE                     | DIRECTORY                   |     |             |                           |
| CITY NAME      |                          | OWNER/                      |     |             |                           |
| AIRS CODE      | ADDRESS                  | OPERATOR                    | UTM | COORD. (km) | EQUIPMENT                 |
| COOK COUNTY    |                          |                             |     |             |                           |
| Calumet City   | Trailer                  | Cook County DEC             | N.  | 4608.775    | SLAMS - SO2, NO/NO2,      |
| 0318003)       | 1703 State St.           | -                           | E.  | 452.673     | 0 <sub>3</sub> , CO       |
| Chicago        | Carver H.S.              | <del>Cook Coun</del> ty DEC | N.  | 4611.597    | NAMS - PM                 |
| 0310060)       | 13100 S. Doty            |                             | E.  | 451.007     | 10                        |
| Chicago        | Cermak Pump Sta          | Cook County DEC             | N.  | 4635,707    | SLAMS - Pb                |
| 0310026)       | 735 W. Harrison          |                             | E.  | 446.469     | SPMS - TSP                |
| Chicago (DISC) | Chicago Ave, Pumping Sta | Cook County DEC             | N   | 4638 335    | NAMS - PM                 |
| 0310049)       | 805 N. Michigan          |                             | E.  | 448.269     |                           |
| bicado         |                          |                             | N   | 4636.096    |                           |
| 0310063)       | 320 S. Franklin          |                             | E.  | 447.365     | SLAMS - O <sub>3</sub>    |
| bicago         | Farr Dormiton            | Cook County DEC             | N   | 4631 393    | SLAMS - PMa - n           |
| (0310014)      | 3300 S. Michigan Ave.    |                             | E.  | 448.232     | 0E 1110 1 112.5           |
| Chicado        | Jardine Water Plant      | III. FPA                    | N.  | 4638,169    | PAMS - NO/NO2, O2, VOC    |
| (0310072)      | 1000 E. Ohio             |                             | E.  | 449.597     | WS/WD, SOL, MET,          |
|                |                          |                             |     |             | UV, RAIN                  |
| Chicago        | Mayfair Pump Sta.        | Cook County DEC             | N.  | 4645.900    | NAMS - Pb                 |
| (0310052)      | 4850 Wilson Ave.         |                             | E.  | 437.878     | SLAMS - PM <sub>2.5</sub> |
|                |                          |                             |     |             | SPMS - ISP                |
| Chicago        | Sears Tower              | III. EPA                    | N.  | 4636.320    | SPMS - O3                 |

#### Table A4

#### 1999 SITE DIRECTORY

| CITY NAME<br>AIRS CODE       | ADDRESS                                     | OWNER/<br>OPERATOR | UTM | COORD. (km) | EQUIPMENT                                   |
|------------------------------|---------------------------------------------|--------------------|-----|-------------|---------------------------------------------|
|                              |                                             |                    |     |             |                                             |
| COOK COUNTY                  |                                             |                    |     |             |                                             |
| Chicago                      | Washington Elem. Sch.                       | III. EPA           | N.  | 4615.013    | NAMS - SO <sub>2</sub>                      |
| (0310059)                    | 3611 E. 114th St.                           |                    | E.  | 455.389     | slams - PM <sub>10</sub><br>SPMS - WS/WD    |
| Cicero (DISC)                | Roosevelt H.S.                              | Cook County DEC    | N.  | 4634.246    | NAMS - PM <sub>10</sub>                     |
| (0316001)                    | 15th St. & 50th Ave.                        |                    | E.  | 437.728     |                                             |
| Cicero                       | Trailer                                     | Cook County DEC    | N.  | 4633.763    | NAMS - SO <sub>2</sub> , NO/NO <sub>2</sub> |
| (0314002)                    | 1820 S. 51st Ave.                           |                    | E.  | 437.541     | SLAMS - O <sub>3</sub> , CO                 |
| Des Plaines                  | Forest Elem. Sch.                           | Cook County DEC    | N.  | 4653.049    | SLAMS - O3, PM2 5 <sup>n</sup>              |
| (0314006)                    | 1375 5th St.                                | -                  | E.  | 425.055     | 0 2.0                                       |
| Evanston                     | Water Pumping Sta.                          | III. EPA           | N.  | 4656.695    | NAMS - O3                                   |
| (0317002)                    | 531 E. Lincoln                              |                    | E.  | 444.260     | SPMS - WS/WD                                |
| Hoffman Estates<br>(0314101) | Hoffman Estates H.S.<br>1100 W. Higgins Rd. | Cook County DEC    | N.  | 4656.069    | SLAMS - PM <sub>10</sub>                    |

| Table A4       |
|----------------|
| 1999           |
| SITE DIRECTORY |
|                |

|                    | Table A4                                       |                   |      |             |                                                                    |  |  |  |  |  |
|--------------------|------------------------------------------------|-------------------|------|-------------|--------------------------------------------------------------------|--|--|--|--|--|
| 1999               |                                                |                   |      |             |                                                                    |  |  |  |  |  |
| SITE DIRECTORY     |                                                |                   |      |             |                                                                    |  |  |  |  |  |
|                    |                                                |                   |      |             |                                                                    |  |  |  |  |  |
| AIRS CODE          | ADDRESS                                        | OPERATOR          | UTM  | COORD. (km) | EQUIPMENT                                                          |  |  |  |  |  |
| 69 METROPOLITAN (  | 60 METDODOLITAN OLIAD CITIES INTEDSTATE (IA H) |                   |      |             |                                                                    |  |  |  |  |  |
|                    |                                                |                   |      |             |                                                                    |  |  |  |  |  |
| ROCK ISLAND COUNTY |                                                |                   |      |             |                                                                    |  |  |  |  |  |
| Moline             | Water Treatment Plant                          | III. EPA          | N.   | 4598.361    | NAMS - SO <sub>2</sub> , O <sub>3</sub><br>SLAMS - PM <sup>n</sup> |  |  |  |  |  |
|                    |                                                |                   | с.   | 101.401     | SPMS - WS/WD, SOL                                                  |  |  |  |  |  |
| 70 METROPOLITAN S  | ST. LOUIS INTERSTATE                           | (IL - MO)         |      |             |                                                                    |  |  |  |  |  |
|                    |                                                |                   |      |             |                                                                    |  |  |  |  |  |
| MADISON COUNTY     |                                                |                   |      |             |                                                                    |  |  |  |  |  |
| Alton              | Clara Barton Elem. Sch.                        | III. EPA          | N.   | 4308.245    | SLAMS - SO <sub>2</sub> , O <sub>3</sub> , PM <sub>10</sub> d      |  |  |  |  |  |
| (1190008)          | 409 Main St.                                   |                   | E.   | 747.375     | SPMS - WS/WD                                                       |  |  |  |  |  |
| Edwardsville       | RAPS Trailer                                   | III. EPA          | N.   | 4297.793    | SLAMS - O3                                                         |  |  |  |  |  |
| (1192007)          | Poag Road                                      |                   | E.   | 757.118     | SPMS - WS/WD, SOL                                                  |  |  |  |  |  |
| Granite City       | Fire Station #1                                | III. EPA          | N.   | 4287.661    | SLAMS - PM <sub>2 5</sub> n                                        |  |  |  |  |  |
| (1191007)          | 23rd & Madison                                 |                   | E.   | 748.745     | 2.0                                                                |  |  |  |  |  |
| Granite City       | AOBT - 2404866780056827578 (HD                 | MSD T4ts8PTMS0 TD | 0 TD |             |                                                                    |  |  |  |  |  |

### Table A4

|                        |                     | Table A4           |                 |           |  |  |  |  |
|------------------------|---------------------|--------------------|-----------------|-----------|--|--|--|--|
| 1999<br>SITE DIRECTORY |                     |                    |                 |           |  |  |  |  |
| CITY NAME<br>AIRS CODE | ADDRESS             | OWNER/<br>OPERATOR | UTM COORD. (km) | EQUIPMENT |  |  |  |  |
| 74 SOUTHEAST ILLI      | NOIS INTRASTATE     |                    |                 |           |  |  |  |  |
| Effingham              | Central Junior H.S. | III. EPA           | N. 4325.131     |           |  |  |  |  |

|                          |                   |                        | Table A4          |          |          |                     |                        |  |
|--------------------------|-------------------|------------------------|-------------------|----------|----------|---------------------|------------------------|--|
|                          |                   | SIT                    | 1999<br>E DIRECTO | ORY      |          |                     |                        |  |
|                          |                   |                        | _                 |          |          |                     |                        |  |
| CITY NAME                |                   |                        | OWN               | ER/      |          |                     |                        |  |
| AIRS CODE                | ADDRE             | SS                     | OPERA             | TOR      | UT       | M COORD. (ki        | n) EQUIPMENT           |  |
| SANGAMON COUN            | NTY               |                        |                   |          |          |                     |                        |  |
| Springfield              | Sewag             | e Treatment Plant      | III. EP           | A        | N.       | 4408.650            | NAMS - SO <sub>2</sub> |  |
| (1670006)                | 3300 N            | lechanicsburg Rd.      |                   |          | E.       | 278.194             | SPMS - WS/WD           |  |
| Springfield<br>(1670008) | Federa<br>6th St. | l Building<br>& Monroe | III. EP           | A        | N.<br>E. | 4408.623<br>273.327 | SLAMS - CO             |  |
| Springfield              | III. EPA          | N. 4408.650            | SLAMS             | 4408.650 |          |                     |                        |  |

## APPENDIX B AIR QUALITY DATA SUMMARY TABLES

#### AIR QUALITY DATA INTERPRETATION

In order to provide a uniform procedure for determining whether a sufficient amount of air quality data has been collected by a sensor in a given time period (year, quarter, month, day, etc.) to accurately represent air quality during that time period, a minimum statistical selection criteria was developed.

In order to calculate an annual average for noncontinuous parameters, a minimum of 75% of the data that was scheduled to be collected must be available, i.e., 45 samples per year for an every-six-day schedule (total possible of 60 samples). Additionally, in order to have proper quarterly balance, each site on an every sixth day schedule should have at least 10 samples per calendar quarter. This provides for a 20% balance in each quarter if the minimum required annual sampling is achieved.

For lead results which must be compared to a quarterly standard, 75% of the possible samples in each quarter must be obtained. Thus for a valid lead quarterly average, a total of 12 values must be available.

 $PM_{10}$  and  $PM_{2.5}$  samplers operate on one of three sampling frequencies:

- Every-day sampling (68 samples required each quarter for 75% data capture)
- Every-third-day sampling (23 samples required each quarter for 75% data capture)
- Every-six-day sampling (12 samples required each quarter for 75% data capture).

To calculate an annual  $PM_{10}$  or  $PM_{2.5}$  mean, arithmetic means are calculated for each quarter in which valid data is recorded in at least 75% of the possible sampling periods. The annual mean is then the arithmetic average of the four quarterly means.

To determine an annual average for continuous data 75% of the total possible yearly observations are necessary, i.e., a minimum of 6570 hours (75% of the hours available) were needed in 1999. In order to provide a balance between the respective quarters, each quarter should have at least 1300 hours which is 20% of the 75% minimum annual requirement. To calculate quarterly averages at sites which do not meet the annual criteria, 75% of the total possible observations in a quarter are needed, i.e., a minimum of 1647 hours of 2200 hours available. Monthly averages also require 75% of the total possible observations in a month, i.e., 540 hours as a minimum. Additionally, for short-term running averages (24 hour, 8 hour, 3 hour) 75% of the data during the particular time period is needed, i.e., 18 hours for a 24-hour average, 6 hours for an 8-hour average and 3 hours for a 3hour average.

For ozone, a valid day for 1-hour samples must have 75% of the hours between 9 a.m. and 9 p.m. otherwise it is considered missing. Α missing day can be considered valid if the peak ozone concentration on the preceding and succeeding days is less than 0.090 ppm. The expected exceedences are actual exceedences adjusted for the percent of missing days. For 8hour samples, running averages are computed for each hour which includes the next seven hours as well. A valid 8-hour average has at least 6 valid 1-hour averages. A valid 8-hour day contains at least 75% (18) of the possible 8-hour running averages. Complete sampling over a three year period requires an average of 90% valid days with each year having at least 75% valid days.

Data listed as not meeting the minimum statistical selection criteria in this report were so noted after evaluation using the criteria above. Although short term averages (3, 8, 24 hours) have been computed for certain sites not meeting the annual

criteria, these averages may not be representative of an entire year's air quality. In certain circumstances where even the 75% criteria is met, the number and/or magnitude of short term averages may not be directly comparable from one year to the next because of seasonal distributional differences.

For summary purposes, the data is expressed in the number of figures to which the raw data is validated. Extra figures may be carried in the averaging technique, but the result is rounded to the appropriate number of figures. For example, the values 9, 9, 10 are averaged to give 9; whereas the values 9.0, 9.0, 10.0 are averaged to 9.3. The raw data itself should not be expressed to more significant figures than the sensitivity of the monitoring methodology allows.

In comparing data to the various air quality standards, the data are implicitly rounded to the number of significant figures specified by that standard. For example, to exceed the 0.12 ppm hourly ozone standard, an hourly value must be 0.125 ppm or higher, to exceed the 9 ppm CO 8-hour standard, an 8-hour average must be 9.5 ppm or higher. Peak averages, though, will be expressed to the number of significant figures appropriate to that monitoring methodology.

Ambient Air Quality National Standards (NAAQS) for sulfur dioxide (SO<sub>2</sub>) and carbon monoxide (CO) have short-term standards for ambient air concentrations (24 hours or less) not to be exceeded more than once per year. Particulate Matter (PM10 and PM2.5) have 24hour standards which are a 3-year average of each year's 99<sup>th</sup> and 98<sup>th</sup> percentile values respectively. In the case of ozone, the expected number of exceedances (one hour per day greater than 0.12 ppm) may not average more than one per year in any period of three consecutive years. The 8-hour ozone standard is concentration based and as such is the average of the fourth highest value each year over a three year period. The standards are promulgated in this manner in order to protect the public from excessive levels in pollution both in terms of acute and chronic health effects.

The following data tables detail and summarize air quality in Illinois in 1999. The tables of short term exceedences list those sites which exceeded any of the short term primary standards (24 hours or less). The detailed data tables list averages and peak concentrations for all monitoring sites in Illinois.

|                                                  | Table B4 |           |          |                        |               |     |     |     |            |  |
|--------------------------------------------------|----------|-----------|----------|------------------------|---------------|-----|-----|-----|------------|--|
|                                                  | 1999     |           |          |                        |               |     |     |     |            |  |
|                                                  |          | PARTICULA | TE MA    | TTER (PM               | [ <u>10</u> ) |     |     |     |            |  |
|                                                  |          | (microgra | ms per o | cubic meter)           |               |     |     |     |            |  |
|                                                  |          |           |          |                        |               |     |     |     | ANNUAL     |  |
| SAMPLING NUMBER OF SAMPLES HIGHEST SAMPLES ARITH |          |           |          |                        |               |     |     |     | ARITHMETIC |  |
| STATION                                          | ADDRESS  | FREQUENCY | TOTAL    | >150 ug/m <sup>3</sup> | 1st           | 2nd | 3rd | 4th | MEAN       |  |
|                                                  |          |           |          |                        |               |     |     |     |            |  |

65 BURLINGTON

| Table B4                             |                                            |           |          |                        |     |     |     |                      |      |
|--------------------------------------|--------------------------------------------|-----------|----------|------------------------|-----|-----|-----|----------------------|------|
|                                      | 1999                                       |           |          |                        |     |     |     |                      |      |
|                                      | P                                          | PARTICULA | TE MA    | TTER (PM               | 10) |     |     |                      |      |
|                                      |                                            | (microgra | ms per o | ubic meter)            |     |     |     |                      |      |
|                                      | SAMPLING NUMBER OF SAMPLES HIGHEST SAMPLES |           |          |                        |     |     |     | ANNUAL<br>ARITHMETIC |      |
| STATION                              | ADDRESS                                    | FREQUENCY | TOTAL    | >150 ug/m <sup>3</sup> | 1st | 2nd | 3rd | 4th                  | MEAN |
| 71 NORTH CENTRAL ILLINOIS INTRASTATE |                                            |           |          |                        |     |     |     |                      |      |
| Oglesby                              | 308 Portland Ave.                          | 1-day     | 364      | 0                      | 150 | 149 | 94  | 84                   |      |

| Table B5                                 |                                 |                 |                |                    |      |      |      |  |  |  |
|------------------------------------------|---------------------------------|-----------------|----------------|--------------------|------|------|------|--|--|--|
|                                          | 1999                            |                 |                |                    |      |      |      |  |  |  |
| SHORT-TERM TRENDS                        |                                 |                 |                |                    |      |      |      |  |  |  |
| PARTICII ATE MATTER (DM - a)             |                                 |                 |                |                    |      |      |      |  |  |  |
|                                          | IANI                            |                 |                | <b>K (1 141 10</b> | )    |      |      |  |  |  |
| ANNUAL ARITHME                           | ETIC MEANS (ug/m <sup>3</sup> ) |                 |                |                    |      |      |      |  |  |  |
| STATION                                  | ADDRESS                         | 1994            | 1995           | 1996               | 1997 | 1998 | 1999 |  |  |  |
|                                          |                                 |                 | \              |                    |      |      |      |  |  |  |
| 65 BURLINGTON                            | - KEOKUK INTERS                 | STATE (IA       | - IL)          |                    |      |      |      |  |  |  |
| PEORIA COUNTY                            |                                 |                 |                |                    |      |      |      |  |  |  |
| Peoria                                   | 613 N.E. Jefferson              | 20              | 21             | 20                 | 21   | 26   | 23   |  |  |  |
| 66 EAST CENTRA                           | L ILLINOIS INTRA                | STATE           |                |                    |      |      |      |  |  |  |
|                                          |                                 | JINIL           |                |                    |      |      |      |  |  |  |
| CHAMPAIGN COUNT                          | ГҮ                              |                 |                |                    |      |      |      |  |  |  |
| Champaign                                | 600 N. Neil                     | 25              | 22             | 19                 | 22   | 24   | 23   |  |  |  |
| 67 METROPOLIT                            | AN CHICAGO INTE                 | <b>RSTATE</b> ( | (IL - IN)      |                    |      |      |      |  |  |  |
|                                          |                                 |                 | · · ·          |                    |      |      |      |  |  |  |
| COOK COUNTY                              |                                 |                 |                |                    |      |      |      |  |  |  |
| Alsip                                    | 4500 W. 123rd St.               | -               | -              | 25                 | 25   | 30   | 25   |  |  |  |
| Blue Island                              | 12700 Sacramento                | 36              | 31             | 30                 | 28   | 33   | 30   |  |  |  |
| Chicago - Carver                         | 13100 S. Doty                   | 36              | 36             | 31                 | 31   | 58   | 32   |  |  |  |
| Chicago - CAPS                           | 805 N. Michigan Ave.            | 36              | 33             | 32                 | 33   | 38   | 40   |  |  |  |
| Chicago - Washington ES                  | 3611 E. 114th St.               | -               | -              | 30                 | 28   | 27   | 27   |  |  |  |
| Cicero                                   | 15th St. & 50th Ave.            | 39              | 37             | 34                 | 32   | 34   | 33   |  |  |  |
| Hoffman Estates                          | 1100 W. Higgins Rd.             | -               | 27             | 22                 | 21   | 26   | 25   |  |  |  |
| Lyons Township                           | 50th St. & Glencoe Ave.         | 46              | 37             | 36                 | 34   | 35   | 36   |  |  |  |
| Merrionette Park                         | 1800 Meadow Lane Dr.            | -               |                | 29                 | 26   | 31   | 27   |  |  |  |
| Midlothian                               | 15205 Crawford Ave.             | -               | -              | 28                 | 25   | 28   | 25   |  |  |  |
| Summit                                   | 60th St. & 74th Ave.            | 42              | 39             | 34                 | 37   | 35   | 34   |  |  |  |
| KANE COUNTY                              |                                 |                 |                |                    |      |      |      |  |  |  |
| Geneva                                   | 300 Randall Rd.                 | -               | -              | -                  | 21   | 24   | 22   |  |  |  |
|                                          |                                 |                 |                |                    |      |      |      |  |  |  |
| 69 METROPOLIT                            | AN QUAD CITIES IN               | NTERSTA'        | ГЕ (ІА -       | IL)                |      |      |      |  |  |  |
| WILL COUNTY                              |                                 |                 |                |                    |      |      |      |  |  |  |
| Joliet                                   | Midland & Campbell Sts.         | 25              | 24             | 22                 | 23   | 23   | 23   |  |  |  |
| 70 METROPOLIT                            | AN ST. LOUIS INTE               | RSTATE          | Ш. <b>- МО</b> | I)                 |      |      |      |  |  |  |
|                                          |                                 |                 |                | )                  |      |      |      |  |  |  |
| MADISON COUNTY                           |                                 |                 |                |                    |      |      |      |  |  |  |
| Alton                                    | 409 Main St.                    | 30              | 30             | 29                 | 30   | 32   | 28   |  |  |  |
| Granite City                             | 15th & Madison                  | +               | 46             | 39                 | 47   | 46   | 31   |  |  |  |
| Granite City                             | 2040 Washington                 | 45              | 41             | 40                 | 37   | 40   | 44   |  |  |  |
| Wood River                               | 54 N. Walcott                   | 32              | 29             | 26                 | 25   | 30   | 26   |  |  |  |
| ST. CLAIR COUNTY                         |                                 |                 |                |                    |      |      |      |  |  |  |
| East St. Louis                           | 13th St. & Tudor Ave.           | 34              | 34             | 33                 | 34   | 37   | 32   |  |  |  |
| Station not in anarchi                   | on during the year              |                 |                |                    |      |      |      |  |  |  |
| <ul> <li>Did not moot minimum</li> </ul> | n curing the year.              | See Annondiv P  | 1)             |                    |      |      |      |  |  |  |
|                                          |                                 | Se Appendix D   | ••)•           |                    |      |      |      |  |  |  |

Primary Annual Standard 50 ug/m<sup>3</sup>

| Table | <b>B5</b> |
|-------|-----------|
|-------|-----------|

#### 1999

# SHORT-TERM TRENDS

# PARTICULATE MATTER (PM<sub>10</sub>)

| ANNUAL ARITHM                    | ANNUAL ARITHMETIC MEANS (ug/m <sup>3</sup> ) |       |      |      |      |      |      |  |  |  |
|----------------------------------|----------------------------------------------|-------|------|------|------|------|------|--|--|--|
| STATION                          | ADDRESS                                      | 1994  | 1995 | 1996 | 1997 | 1998 | 1999 |  |  |  |
|                                  |                                              |       |      |      |      |      |      |  |  |  |
| 71 NORTH CENT                    | RAL ILLINOIS INTRAS                          | STATE |      |      |      |      |      |  |  |  |
| LASALLE COUNTY                   |                                              |       |      |      |      |      |      |  |  |  |
| Oglesby                          | 308 Portland Ave.                            | 35    | 31   | 29   | 28   | 29   | 28   |  |  |  |
| 74 SOUTHEAST ILLINOIS INTRASTATE |                                              |       |      |      |      |      |      |  |  |  |
| JACKSON COUNTY                   |                                              |       |      |      |      |      |      |  |  |  |
| Carbondale                       | 607 E. College                               | 20    | 24   | 19   | 22   | 23   | 22   |  |  |  |
| 75 WEST CENTRA                   | AL ILLINOIS INTRAST                          | ATE   |      |      |      |      |      |  |  |  |
| ADAMS COUNTY                     |                                              |       |      |      |      |      |      |  |  |  |
| Quincy                           | 732 Hampshire                                | 25    | 23   | 21   | 20   | 22   | 21   |  |  |  |
| SANGAMON COUNT                   | Y                                            |       |      |      |      |      |      |  |  |  |
| Springfield                      | State Fair Grounds                           | -     | -    | -    | 23   | 25   | 20   |  |  |  |

Station not in operation during the year.

+ Did not meet minimum statistical selection criteria (See

| Table B6                                  |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|-------------------------------------------|----------------------------------|------------------|-------------------------|-----------------------|--------|-------------|----------------|------|------------|--|--|--|--|
| 1999                                      |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           | PARTICULATE MATTER FINE (PM 2.5) |                  |                         |                       |        |             |                |      |            |  |  |  |  |
| (micrograms per cubic meter)              |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
| ANNUAL                                    |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  | SAMPLING         | NUMBER                  | R OF SAMPLES          |        | HIGHEST     | SAMPLES        |      | ARITHMETIC |  |  |  |  |
| STATION                                   | ADDRESS                          | FREQUENCY        | TOTAL                   | >65 ug/m <sup>3</sup> | 1st    | 2nd         | 3rd            | 4th  | MEAN       |  |  |  |  |
| 65 BURLINGTON-KEOKUK INTERSTATE (IA - IL) |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
| Peoria                                    | 613 N.E. Jefferson               | 6-day            | 54                      | 0                     | 42.7   | 38.0        | 35.8           | 32.5 | +          |  |  |  |  |
| 66 EAST CENTR                             | RAL ILLINOIS IN                  | TRASTATI         | E                       |                       |        |             |                |      |            |  |  |  |  |
| 00 EAST CENTRAL ILLINUIS INTRASTATE       |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
| Bondville                                 | Twp. Rd. 500 E.                  | 6-day            | 50                      | 0                     | 38.2   | 37.3        | 33.1           | 29.3 | +          |  |  |  |  |
| 67 METROPOLI                              | TAN CHICAGO I                    | NTERSTA'         | TE (IL                  | - IN)                 |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           | 12700 Sacramento                 | 6-day            | 59                      | 0                     | 513    | 47.0        | 39.5           | 38.4 | 174        |  |  |  |  |
| Chicago-Farr                              | 3300 S. Michigan Ave             | 6-day            | 56                      | 0                     | 50.0   | 43.9        | 42.9           | 39.2 | 18.0       |  |  |  |  |
| Chicago-Mayfair                           | 4850 Wilson Ave.                 | 6-day            | 48                      | 0                     | 46.8   | 39.9        | 38.3           | 36.0 | +          |  |  |  |  |
| Chicago-SF Police                         | 103rd & Luella                   | 6-day            | 58                      | 0                     | 48.0   | 46.4        | 38.8           | 32.9 | 17.2       |  |  |  |  |
| Chicago-Washington HS                     | 3535 F. 114th St.                | 6-dav            | 58                      | 0                     | 50.8   | 44.1        | 42.3           | 33.8 | 17.4       |  |  |  |  |
| Des Plaines                               | 1375 5th St.                     | 6-dav            | 53                      | 0                     | 46.8   | 37.8        | 32.5           | 28.8 | +          |  |  |  |  |
| Lyons Township                            | 50th St. & Glencoe Ave.          | 6-dav            | 58                      | 0                     | 55.9   | 54.1        | 48.1           | 42.5 | 21.8       |  |  |  |  |
| Lvons                                     | 4043 Joliet Ave.                 | 6-dav            | 58                      | 0                     | 49.7   | 46.0        | 43.2           | 37.2 | 18.2       |  |  |  |  |
| Northbrook                                | 750 Dundee Road                  | 6-dav            | 59                      | 0                     | 45.7   | 43.0        | 30.7           | 29.3 | 15.5       |  |  |  |  |
| Summit                                    | 60th St. & 74th Ave.             | 6-day            | 58                      | 0                     | 46.7   | 45.6        | 36.4           | 34.1 | 17.5       |  |  |  |  |
|                                           | ,                                |                  |                         |                       |        |             |                |      |            |  |  |  |  |
| Naperville                                | 400 S. Fadle St                  | 6-day            | 54                      | 0                     | 41 5   | 32.1        | 29.2           | 28.9 | 15.6       |  |  |  |  |
|                                           | 400 0. Lagic 01.                 | 0 day            | 54                      | 0                     | 41.0   | 52.1        | 20.2           | 20.5 | 10.0       |  |  |  |  |
| WILL COUNTY                               |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
| Braidwood                                 | 36400 S. Essex Rd.               | 6-day            | 52                      | 0                     | 36.1   | 30.4        | 29.6           | 26.6 | +          |  |  |  |  |
| Joliet                                    | Midland & Campbell               | 6-day            | 59                      | 0                     | 44.3   | 39.0        | 35.2           | 30.5 | 15.5       |  |  |  |  |
| 69 METROPOLI                              | TAN QUAD CITI                    | ES INTERS        | STATE                   | (IA - IL)             |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           | 30 18th St                       | 6-day            | 57                      | 0                     | 10.6   | 10.8        | 35.1           | 33.5 | 16.4       |  |  |  |  |
|                                           | 50 1011 51.                      | 0-uay            | 51                      | 0                     | 49.0   | 40.0        | 55.1           | 55.5 | 10.4       |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  |                         |                       |        |             |                |      |            |  |  |  |  |
| + - Did not meet minimu                   | m statistical selection crite    | ria (See Section | B.1)                    |                       |        |             |                |      |            |  |  |  |  |
|                                           |                                  |                  | 2                       |                       |        |             | 2              |      |            |  |  |  |  |
|                                           | Primary 24-Hour                  | Standard 65 u    | g/m <sup>3</sup> ; Priı | nary Annual S         | tandar | d 15.0 ug/ı | m <sup>3</sup> |      |            |  |  |  |  |



|                                             |                               | Ta                 | ble B'                | 7               |               |       |            |           |          |      |  |  |  |
|---------------------------------------------|-------------------------------|--------------------|-----------------------|-----------------|---------------|-------|------------|-----------|----------|------|--|--|--|
|                                             |                               | CARBON<br>(parts ] | 1999<br>MON<br>per mi | NOXID<br>llion) | E             |       |            |           |          |      |  |  |  |
|                                             |                               | NUMBE              | R OF SA               | MPLES           |               | н     | GHEST SA   | AMPLES (p | pm)      |      |  |  |  |
|                                             | 1-HR 8-HR 1-HOUR AVERAGE 8-HC |                    |                       |                 |               |       |            |           |          | ₹AGE |  |  |  |
| STATION                                     | ADDRESS                       | TOTAL >            | 35 PPM                | >9 PPM          | 1ST           | 2ND   | 3RD        | 1ST       | 2ND      | 3RD  |  |  |  |
| 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) |                               |                    |                       |                 |               |       |            |           |          |      |  |  |  |
| PEORIA COUNTY                               |                               |                    |                       |                 |               |       |            |           |          |      |  |  |  |
| Peoria                                      | 1005 N. University            | 8550               | 0                     | 0               | 7.9           | 7.2   | 6.9        | 5.4       | 4.6      | 4.4  |  |  |  |
| 67 METROPOLITA                              | N CHICAGO INT                 | ERSTATE            | (IL -                 | IN)             |               |       |            |           |          |      |  |  |  |
| COOK COUNTY                                 |                               |                    |                       |                 |               |       |            |           |          |      |  |  |  |
| Calumet City                                | 1703 State St.                | 8504               | 0                     | 0               | 5.2           | 5.1   | 4.9        | 4.5       | 3.3      | 2.9  |  |  |  |
| Chicago - CTA Building                      | 320 S. Franklin               | 8679               | 0                     | 0               | 4.9           | 4.8   | 4.7        | 3.8       | 2.9      | 2.8  |  |  |  |
| Cicero                                      | 1830 S. 51st Ave.             | 8684               | 0                     | 0               | 6.8           | 6.4   | 5.8        | 5.1       | 3.7      | 3.1  |  |  |  |
| Maywood                                     | 1505 S. First Ave             | 8513               | 0                     | 0               | 6.8           | 6.2   | 6.2        | 5.1       | 4.9      | 4.7  |  |  |  |
| Schiller Park                               | 4743 N. Mannheim              | 8558               | 0                     | 0               | 4.7           | 4.5   | 4.0        | 3.2       | 2.9      | 2.8  |  |  |  |
| WILL COUNTY                                 |                               |                    |                       |                 |               |       |            |           |          |      |  |  |  |
| Braidwood                                   | 36400 S. Essex Rd.            | 8637               | 0                     | 0               | 1.5           | 1.5   | 1.4        | 1.1       | 1.0      | 1.0  |  |  |  |
| 70 METROPOLITA                              | N ST. LOUIS INT               | ERSTATE            | (IL -                 | MO)             |               |       |            |           |          |      |  |  |  |
|                                             |                               | 0500               | 0                     | 0               | 4.0           |       | 0.0        | 0.4       | 0.4      |      |  |  |  |
| Granite City                                | 2001 Edison                   | 8596               | 0                     | 0               | 4.6           | 4.1   | 3.6        | 2.4       | 2.4      | 2.3  |  |  |  |
| 73 ROCKFORD - JA                            | ANESVILLE - BEL               | OIT INTE           | RSTA                  | TE (II          | <b>- WI</b> ) |       |            |           |          |      |  |  |  |
| WINNEBAGO COUNTY<br>Rockford                | 425 E. State                  | 8642               | 0                     | 0               | 6.9           | 6.5   | 6.0        | 4.4       | <br> 3.7 | 3.5  |  |  |  |
| 75 WEST CENTRAI                             | L ILLINOIS INTRA              | ASTATE             | -ERSTAT               | E (IL           |               | 0 Tc2 | 7BELOIT IN | JTERSTATE | <br>(IL  |      |  |  |  |

-

0 0 6.9 6 . 9 6.5 2.4 2.4 0 --

|                                               |                            | Table     | e <b>B</b> 9 |        |       |       |         |       |       |  |  |  |  |
|-----------------------------------------------|----------------------------|-----------|--------------|--------|-------|-------|---------|-------|-------|--|--|--|--|
| 1999<br>SULFUR DIOXIDE<br>(parts per million) |                            |           |              |        |       |       |         |       |       |  |  |  |  |
|                                               |                            | NUMBER    | OF SA        | MPLES  | 3-146 |       | SAMPLES |       |       |  |  |  |  |
| STATION                                       | ADDRESS                    | TOTAL     | > 0.5        | > 0.14 | 1ST   | 2ND   | 1ST     | 2ND   | MEAN  |  |  |  |  |
| 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL)   |                            |           |              |        |       |       |         |       |       |  |  |  |  |
| PEORIA COUNTY<br>Peoria                       | Hurlburt & MacArthur       | 8635      | 0            | 0      | 0.149 | 0.146 | 0.045   | 0.040 | 0.007 |  |  |  |  |
| TAZEWELL COUNTY<br>Pekin                      | 272 Derby                  | 8589      | 0            | 0      | 0.202 | 0.159 | 0.038   | 0.037 | 0.005 |  |  |  |  |
| 66 EAST CENTRAI                               | L ILLINOIS INTRAS          | STATE     |              |        |       |       |         |       |       |  |  |  |  |
| CHAMPAIGN COUNTY                              |                            |           |              |        |       |       |         |       |       |  |  |  |  |
|                                               | 606 E. Grove               | 8601      | 0            | 0      | 0.032 | 0.025 | 0.010   | 0.010 | 0.002 |  |  |  |  |
| 67 METROPOLITA<br>                            | AN CHICAGO INTEI           | RSTATE (1 | IL - 1       | IN)    |       |       |         |       |       |  |  |  |  |
| COOK COUNTY                                   |                            |           |              |        |       |       |         |       |       |  |  |  |  |
| Bedford Park                                  | 7800 W. 65th St.           | 8664      | 0            | 0      | 0.126 | 0.114 | 0.060   | 0.045 | 0.008 |  |  |  |  |
| Blue Island                                   | 12700 Sacramento           | 8197      | 0            | 0      | 0.103 | 0.090 | 0.052   | 0.048 | 0.009 |  |  |  |  |
| Calumet City                                  | 1703 State Sr.             | 8653      | 0            | 0      | 0.104 | 0.078 | 0.038   | 0.034 | 0.009 |  |  |  |  |
| Chicago - CTA                                 | 320 S. Franklin            | 8490      | 0            | 0      | 0.053 | 0.048 | 0.024   | 0.023 | 0.004 |  |  |  |  |
| Chicago - SE Police                           | 103rd & Luella             | 8571      | 0            | 0      | 0.062 | 0.054 | 0.026   | 0.016 | 0.003 |  |  |  |  |
| Chicago - Washington ES                       | 3611 E. 114th St.          | 8394      | 0            | 0      | 0.067 | 0.048 | 0.021   | 0.018 | 0.006 |  |  |  |  |
| Cicero                                        | 1830 S. 51st Ave.          | 8676      | 0            | 0      | 0.083 | 0.081 | 0.032   | 0.028 | 0.006 |  |  |  |  |
| Lemont                                        | 729 Houston                | 8639      | 0            | 0      | 0.168 | 0.105 | 0.041   | 0.034 | 0.006 |  |  |  |  |
| DuPAGE COUNTY                                 |                            |           |              |        |       |       |         |       |       |  |  |  |  |
| Lisle                                         | Morton Arboretum           | 8610      | 0            | 0      | 0.113 | 0.073 | 0.028   | 0.019 | 0.003 |  |  |  |  |
| WILL COUNTY                                   |                            |           |              |        |       |       |         |       |       |  |  |  |  |
| Joliet                                        | Rte 6 & Young Rd.          | 8530      | 0            | 0      | 0.072 | 0.069 | 0.040   | 0.023 | 0.005 |  |  |  |  |
| 69 METROPOLITAN QUAD                          | CITIES INTERSTATE (IA - II | _)        |              |        |       |       |         |       |       |  |  |  |  |
| ROCK ISLAND COUNTY                            |                            |           |              |        |       |       |         |       |       |  |  |  |  |
| Moline                                        | 30 18th St.                | 8660      | 0            | 0      | 0.027 | 0.027 | 0.010   | 0.010 | 0.003 |  |  |  |  |
|                                               |                            |           |              |        |       |       |         |       |       |  |  |  |  |
|                                               |                            |           |              |        |       |       |         |       |       |  |  |  |  |
|                                               |                            |           |              |        |       |       |         |       |       |  |  |  |  |
|                                               |                            |           |              |        |       |       |         |       |       |  |  |  |  |
|                                               |                            |           |              |        |       |       |         |       |       |  |  |  |  |
|                                               |                            |           |              |        |       |       |         |       |       |  |  |  |  |

Primary 24-Hour Standard 0.14 ppm; Primary Annual Standard 0.03 ppm

1999 SULFUR Df BT 309 718.5 TD () Tj ET 47.25 716.25 0.75 12

#### 1999 SHORT-TERM TRENDS SULFUR DIOXIDE

#### 1999 SHORT-TERM TRENDS SULFUR DIOXIDE

|                     |                        |       | ANNUAL MEANS (ppm) |       |       |       |       |  |
|---------------------|------------------------|-------|--------------------|-------|-------|-------|-------|--|
| STATION             | ADDRESS                | 1994  | 1995               | 1996  | 1997  | 1998  | 1999  |  |
|                     | / 2211200              |       |                    |       |       |       | 1000  |  |
| 70 METROPOLITA      | N ST. LOUIS INTERS     | TATE  | (IL - MC           | ))    |       |       |       |  |
|                     |                        |       | (                  | - /   |       |       |       |  |
| MADISON COUNTY      |                        |       |                    |       |       |       |       |  |
| Alton               | 409 Main St.           | 0.008 | 0.010              | 0.009 | 0.007 | 0.008 | 0.007 |  |
| Granite City        | 2001 Edison            | -     | 0.007              | 0.006 | 0.006 | 0.006 | 0.006 |  |
| South Roxanna       | Michigan Ave.          | 0.012 | 0.011              | 0.010 | 0.010 | 0.008 | 0.008 |  |
| Wood River          | 54 N. Walcott          | 0.006 | 0.007              | 0.007 | 0.006 | 0.006 | 0.007 |  |
| Wood River          | 1710 Vaughn Rd.        | 0.012 | 0.012              | 0.011 | 0.009 | +     | 0.009 |  |
| RANDOLPH COUNTY     |                        |       |                    |       |       |       |       |  |
| Houston             | Twp Rd 150 & Twp Rd 45 | 0.006 | 0.006              | 0.006 | 0.005 | 0.005 | 0.004 |  |
|                     |                        |       |                    |       |       |       |       |  |
| ST. CLAIR COUNTY    |                        |       |                    |       |       |       |       |  |
| East St. Louis      | 13th & Tudor           | 0.010 | 0.009              | 0.009 | 0.009 | 0.008 | 0.008 |  |
| Marissa             | Risdon School Rd.      | 0.007 | 0.005              | 0.004 | 0.005 | 0.005 | 0.004 |  |
| Sauget              | Little Ave.            | 0.008 | 0.009              | 0.009 | 0.009 | 0.008 | 0.008 |  |
| 74 SOUTHEAST ILI    | LINOIS INTRASTATI      | E     |                    |       |       |       |       |  |
| WABASH COUNTY       |                        |       |                    |       |       |       |       |  |
| Mount Carmel        | Division St.           | 0.012 | 0.011              | 0.009 | 0.007 | 0.004 | 0.007 |  |
| Rural Wabash County | South of SR-1          | 0.011 | 0.009              | 0.009 | 0.007 | 0.005 | 0.005 |  |
| 75 WEST CENTRAI     | L ILLINOIS INTRAS      | ГАТЕ  |                    |       |       |       |       |  |
| ADAMS COUNTY        |                        |       |                    |       |       |       |       |  |
| Quincy              | 732 Hampshire          | 0.005 | 0.005              | 0.004 | 0.004 | 0.004 | 0.005 |  |
|                     |                        |       |                    |       |       |       |       |  |
| Decatur             | 2200 N 22nd St         | 0.006 | 0.005              | 0.005 | 0.006 | 0.005 | 0.005 |  |
|                     |                        | 0.000 | 0.000              | 0.000 | 0.000 | 0.000 | 0.000 |  |
| MACOUPIN COUNTY     |                        |       |                    |       |       |       |       |  |
| Nilwood             | Heaton & DuBois        | 0.003 | 0.003              | 0.002 | 0.003 | 0.003 | 0.003 |  |
|                     |                        |       |                    |       |       |       |       |  |
| Springfield         | Sewage Plant           | 0.006 | 0.006              | 0.006 | 0.006 | 0.006 | 0.006 |  |
| -1                  |                        |       |                    |       |       |       |       |  |
|                     |                        |       |                    |       |       |       |       |  |

- Station not in operation during year shown

+ Did not meet minimum statistical selection criteria (See Section B.1)

Primary Annual Standard 0.03 ppm

#### 1999 NITROGEN DIOXIDE (parts per million)

#### 1999 SHORT-TERM TRENDS NITROGEN DIOXIDE

|                       | ANNUAL MEANS (ppm) |        |           |            |       |       |       |  |  |  |
|-----------------------|--------------------|--------|-----------|------------|-------|-------|-------|--|--|--|
| STATION               | ADDRESS            | 1994   | 1995      | 1996       | 1997  | 1998  | 1999  |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
| <b>67 METROPOLITA</b> | AN CHICAGO INTE    | RSTATE | (IL - IN) | )          |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
| COOK COUNTY           |                    |        |           |            |       |       |       |  |  |  |
| Calumet City          | 1703 State St.     | 0.024  | 0.024     | 0.022      | 0.024 | 0.025 | 0.024 |  |  |  |
| Chicago - CTA         | 320 S. Franklin    | 0.032  | 0.032     | 0.031      | 0.034 | 0.032 | 0.032 |  |  |  |
| Chicago - Truman      | 1145 W. Wilson     | -      | -         | -          | -     | 0.024 | 0.024 |  |  |  |
| Chicago - University  | 5720 S. Ellis      | 0.025  | 0.027     | 0.024      | 0.024 | 0.023 | 0.022 |  |  |  |
| Cicero                | 1820 S. 51st St.   | 0.026  | 0.027     | 0.027      | 0.027 | 0.026 | 0.027 |  |  |  |
| Northbrook            | 750 Dundee Rd.     | -      | -         | -          | +     | 0.017 | 0.017 |  |  |  |
| Schiller Park         | 4743 N. Mannheim   | -      | -         | -          | -     | 0.031 | 0.031 |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
| WILL COUNTY           |                    |        |           |            |       |       |       |  |  |  |
| Braidwood             | 36400 S. Essex Rd. | -      | +         | 0.009      | 0.009 | 0.009 | 0.010 |  |  |  |
| 70 METROPOLIT         | AN ST. LOUIS INTE  | RSTATE | (IL - M   | <b>O</b> ) |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
| SI. CLAIR COUNTY      | 10th 9 Tudor       | 0.020  | 0.021     | 0.020      | 0.010 | 0.019 | 0.010 |  |  |  |
| East St. Louis        |                    | 0.020  | 0.021     | 0.020      | 0.019 | 0.016 | 0.019 |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |
|                       |                    |        |           |            |       |       |       |  |  |  |

- Station not in operation during year shown

+ Did not meet minimum statistical selection criteria (See Section B.1)

|                                                 | Table B13            |                   |        |         |            |                             |                 |     |  |  |  |  |
|-------------------------------------------------|----------------------|-------------------|--------|---------|------------|-----------------------------|-----------------|-----|--|--|--|--|
| 1999<br>LEAD<br>(micrograms per cubic meter)    |                      |                   |        |         |            |                             |                 |     |  |  |  |  |
| NUMBER OF<br>QUARTERS QUARTERLY AVERAGES ANNUAL |                      |                   |        |         |            |                             |                 |     |  |  |  |  |
| STATION                                         | ADDRESS              | >1.5              | 1st    | 2nd     | 3rd        | 4th                         | MEAN            |     |  |  |  |  |
| 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL)     |                      |                   |        |         |            |                             |                 |     |  |  |  |  |
| PEORIA COUNTY<br>Peoria                         | 613 N.E. Jefferson   | 0                 | 0.01   | 0.01    | 0.02       | 0.02                        | 0.02            |     |  |  |  |  |
| 67 METROPOLIT                                   | TAN CHICAGO INT      | TERSTATE (IL - IN | ()     |         |            |                             |                 |     |  |  |  |  |
| COOK COUNTY                                     |                      |                   |        |         |            |                             |                 |     |  |  |  |  |
| Alsip                                           | 4500 W. 123rd St.    | 0                 | 0.01   | 0.02    | 0.02       | 0.01                        | 0.02            |     |  |  |  |  |
| Chicago - Cermak                                | 735 W. Harrison      | 0                 | 0.03   | 0.05    | 0.06       | 0.06                        | 0.05            |     |  |  |  |  |
| Chicago - Mayfair                               | 4850 Wilson Ave.     | 0                 | 0.02   | 0.02    | +          | 0.02                        | 0.02            |     |  |  |  |  |
| Chicago - Washington                            | 3535 E. 114th St.    | 0                 | 0.03   | 0.02    | 0.04       | 0.03                        | 0.03            |     |  |  |  |  |
| Maywood                                         | 1500 Maybrook Dr.    | 0                 | 0.04   | 0.03    | 0.03       | 0.03                        | 0.03            |     |  |  |  |  |
| Schiller Park                                   | 4243 N. Mannheim Rd. | 0                 | 0.02   | 0.01    | 0.02       | 0.02                        | 0.02            |     |  |  |  |  |
| Summit                                          | 60th St. & 74th Ave. | 0                 | 0.02   | 0.02    | 0.02       | 0.03                        | 0.03            |     |  |  |  |  |
| 70 METROPOLI                                    | FAN ST. LOUIS IN     | TERSTATE (IL - M  | 0)     |         |            |                             |                 |     |  |  |  |  |
| MADISON COUNTY                                  |                      |                   |        |         |            |                             |                 |     |  |  |  |  |
| Granite City                                    | 15th & Madison 0.02  | 2 0.02            | C3j 20 | ).25 TD | SO10113 f3 | <b>B</b> T Ø₄3. <b>0</b> 3t | N1Tj 4.5 0 0.02 | 2TD |  |  |  |  |

Т

# Table B14 1999 FILTER ANALYSIS DATA (micrograms per cubic meter) TOTAL TOTAL HIGHEST ARITH.

STATION

|                                                              |                                             |         | Tabl   | e B14             |            |         |       |       |       |  |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------|---------|--------|-------------------|------------|---------|-------|-------|-------|--|--|--|--|--|
| 1999<br>FILTER ANALYSIS DATA<br>(micrograms per cubic meter) |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| TOTAL HIGHEST ARITH. TOTAL HIGHEST                           |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| STATION                                                      | ADDRESS                                     | SAMPLES | s 1st  | 2nd               | MEAN       | SAMPLES | 1st   | 2nd   | MEAN  |  |  |  |  |  |
|                                                              | <u>CADMIUM</u> <u>CHROMIUM</u>              |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| 65 BURLINGTON - KEOKUK INTERSTATE (IA - IL)                  |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              | 05 DUKLINGIUN - KEUKUK INIEKSIAIE (IA - IL) |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| PEORIA COUNTY                                                | 613 N E lefferson                           | 57      | 0.000  | 0.000             | 0.000      | 57      | 0.003 | 0.003 | 0.000 |  |  |  |  |  |
| T CONA                                                       | 013 N.L. Jenerson                           | 57      | 0.000  | 0.000             | 0.000      | 57      | 0.005 | 0.005 | 0.000 |  |  |  |  |  |
| 67 METROPOL                                                  | ITAN CHICAGO I                              | NTERST  | ATE (  | IL - IN           | )          |         |       |       |       |  |  |  |  |  |
| COOK COUNTY                                                  |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| Alsip                                                        | 4500 W. 123rd. St.                          | 56      | 0.011  | 0.008             | 0.002      | 56      | 0.008 | 0.008 | 0.003 |  |  |  |  |  |
| Chicago - Cermak                                             | 735 W. Harrison                             | 56      | 0.014  | 0.011             | 0.003      | 56      | 0.022 | 0.021 | 0.009 |  |  |  |  |  |
| Chicago - Mayfair                                            | 4850 Wilson Ave                             | 47      | 0.004  | 0.004             | +          | 47      | 0.014 | 0.013 | +     |  |  |  |  |  |
| Chicago - Washington                                         | 3535 E. 114th St.                           | 60      | 0.013  | 0.009             | 0.003      | 60      | 0.027 | 0.015 | 0.006 |  |  |  |  |  |
| Maywood                                                      | 1500 Maybrook Dr.                           | 59      | 0.015  | 0.013             | 0.003      | 59      | 0.030 | 0.024 | 0.011 |  |  |  |  |  |
| Schiller Park                                                | 4743 N. Mannheim Rd.                        | 61      | 0.000  | 0.000             | 0.000      | 61      | 0.007 | 0.007 | 0.002 |  |  |  |  |  |
| Summit                                                       | 60th St. & 74th Ave.                        | 59      | 0.009  | 0.008             | 0.002      | 59      | 0.011 | 0.008 | 0.003 |  |  |  |  |  |
| 70 ΜΕΤΡΟΡΟΙ                                                  | ΙΤΑΝ ΩΤ Ι ΟΠΙΩΙ                             | NTEDST  | 'ATE ( | TI _ M(           | ור         |         |       |       |       |  |  |  |  |  |
|                                                              | 11AN 51. LOUIS I                            | INTERST | AIL    | <u>117 - 1810</u> | <b>)</b> ) |         |       |       |       |  |  |  |  |  |
| MADISON COUNT                                                | ſY                                          |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| Granite City                                                 | 15th & Madison                              | 57      | 0.012  | 0.005             | 0.000      | 57      | 0.020 | 0.018 | 0.005 |  |  |  |  |  |
| Wood River                                                   | 54 N. Walcott                               | 58      | 0.025  | 0.008             | 0.001      | 58      | 0.003 | 0.003 | 0.000 |  |  |  |  |  |
| ST. CLAIR COUN                                               | ТҮ                                          |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| East St. Louis                                               | 13th St. & Tudor Ave.                       | 58      | 0.134  | 0.095             | 0.008      | 58      | 0.003 | 0.003 | 0.001 |  |  |  |  |  |
| 75 WEST CENT                                                 | DAT ITTINOIS IN                             | TPASTA  | TE     |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             | INAGIA  |        |                   |            |         |       |       |       |  |  |  |  |  |
| MACOUPIN COUN                                                | NTY                                         |         |        |                   |            |         |       |       |       |  |  |  |  |  |
| Nilwood                                                      | Heaton & DuBois                             | 58      | 0.000  | 0.000             | 0.000      | 58      | 0.000 | 0.000 | 0.000 |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |
|                                                              |                                             |         |        |                   |            |         |       |       |       |  |  |  |  |  |

|                         |                      |         | Tabl        | e B14       |        |             |         |             |           |
|-------------------------|----------------------|---------|-------------|-------------|--------|-------------|---------|-------------|-----------|
|                         |                      | FILTE   | 19<br>R ANA | 99<br>LYSIS | DATA   |             |         |             |           |
|                         |                      | (microg | rams p      | er cubic    | meter) |             |         |             |           |
|                         |                      | TOTAL   | HI          | GHEST       | ARITH. | TOTAL       | HI      | GHEST       | ARITH     |
| STATION                 | ADDRESS              | SAMPLES | 1st         | 2nd         | MEAN   | SAMPLES     | S 1st   | 2nd         | MEAN      |
|                         |                      |         | <u>IR</u>   | <u>ON</u>   |        | 1           | MANO    | GANESE      | 2         |
| 65 BURLINGT             | JN - KEOKUK INI<br>- | IERSIAI | E (IA       | - IL)       |        |             |         |             |           |
| PEORIA COUNTY<br>Peoria | 613 N.E. Jefferson   | 57      | 1.13        | 1.01        | 0.40   | 57          | 0.066   | 0.064       | 0.019     |
| 67 METROPOL             | JTAN CHICAGO I       | NTERST  | ATE (       | IL - IN     | )      |             |         |             |           |
| COOK COUNTY             | 571.011.0            | 1       |             |             | 0.019  | KTD 0 Tc -( | 0.07435 | Tw (33 Tj ( | 67.4500 \ |

| 1999<br>FILTER ANALYSIS DATA<br>(micrograms per cubic meter)                 |                      |         |       |           |       |         |       |       |       |  |  |  |  |
|------------------------------------------------------------------------------|----------------------|---------|-------|-----------|-------|---------|-------|-------|-------|--|--|--|--|
| TOTAL HIGHEST ARITH. TOTAL HIGHEST ARI                                       |                      |         |       |           |       |         |       |       |       |  |  |  |  |
| STATION                                                                      | ADDRESS              | SAMPLES | 1st   | 2nd       | MEAN  | SAMPLES | 1st   | 2nd   | MEAN  |  |  |  |  |
| <u>NICKEL</u> <u>SELENIUM</u><br>65 BURLINGTON - KEOKUK INTERSTATE (IA - IL) |                      |         |       |           |       |         |       |       |       |  |  |  |  |
| PEORIA COUNTY                                                                |                      |         |       |           |       |         |       |       |       |  |  |  |  |
| Peoria                                                                       | 613 N.E. Jefferson   | 57      | 0.000 | 0.000     | 0.000 | 57      | 0.006 | 0.005 | 0.001 |  |  |  |  |
| 67 METROPOLI                                                                 | ITAN CHICAGO I       | NTERST  | ATE   | (IL - IN) | 1     |         |       |       |       |  |  |  |  |
| COOK COUNTY                                                                  |                      |         |       |           |       |         |       |       |       |  |  |  |  |
| Alsip                                                                        | 4500 W. 123rd. St.   | 56      | 0.037 | 0.016     | 0.007 | NA      |       |       |       |  |  |  |  |
| Chicago - Cermak                                                             | 735 W. Harrison      | 56      | 0.030 | 0.019     | 0.010 | NA      |       |       |       |  |  |  |  |
| Chicago - Mayfair                                                            | 4850 Wilson Ave      | 47      | 0.014 | 0.012     | +     | NA      |       |       |       |  |  |  |  |
| Chicago - Washington                                                         | 3535 E. 114th St.    | 59      | 0.024 | 0.018     | 0.009 | NA      |       |       |       |  |  |  |  |
| Maywood                                                                      | 1500 Maybrook Dr.    | 59      | 0.022 | 0.020     | 0.011 | NA      |       |       |       |  |  |  |  |
| Schiller Park                                                                | 4743 N. Mannheim Rd. | 61      | 0.007 | 0.003     | 0.000 | 61      | 0.005 | 0.004 | 0.001 |  |  |  |  |
| Summit                                                                       | 60th St. & 74th Ave. | 59      | 0.068 | 0.016     | 0.008 | NA      |       |       |       |  |  |  |  |

70 METROPOLITAN ST. LOUIS INTERSTATE (IL - MO)
## 1999 FILTER ANALYSIS DATA (micrograms per cubic meter)

|         |         | TOTAL | HIGHEST | ARITH. | TOTAL | HIGHEST | ARITH. |
|---------|---------|-------|---------|--------|-------|---------|--------|
| STATION | ADDRESS | .4776 |         |        |       |         |        |

|                   |                    |          | Tabl  | e B14     |                     |                               |                    |               |                    |
|-------------------|--------------------|----------|-------|-----------|---------------------|-------------------------------|--------------------|---------------|--------------------|
|                   |                    |          | 19    | 99        |                     |                               |                    |               |                    |
|                   |                    | FILTEF   | R ANA | LYSIS     | DATA                |                               |                    |               |                    |
|                   |                    | (microgr | ams p | er cubic  | meter)              |                               |                    |               |                    |
|                   |                    | TOTAL    | HI    | GHEST     | ARITH.              | TOTAL                         | HIG                | HEST          | ARITH.             |
| STATION           | ADDRESS            | SAMPLES  | 1st   | 2nd       | MEAN                | SAMPLES                       | 1st                | 2nd           | MEAN               |
|                   |                    |          | NITD  | ATES      |                     |                               | SIIIE              | ATES          |                    |
| 65 BURLINGT       | 'ON - KEOKUK IN    | TERSTAT  | E (IA | - IL)     |                     |                               | SULL               | AILO          |                    |
| PEORIA COUNT      | Y                  |          |       |           |                     |                               |                    |               |                    |
| Peoria            | 613 N.E. Jefferson | 57       | 13.7  | 10.6      | 4.3                 | 57                            | 19.3               | 17.2          | 7.3                |
| 67 METROPO        | LITAN CHICAGO      | INTERST  | ATE ( | (IL - IN) | )                   |                               |                    |               |                    |
| COOK COUNTY       |                    |          |       |           |                     |                               |                    |               |                    |
| Alsip             | 4500 W. 123rd. St. | 56       | 11.6  | 11.0      | 4.3                 | 56                            | 24.8               | 21.0          | 6.0                |
| Chicago - Cermak  | 735 W. Harrison    | 56       | 14.9  | 13.3      | 4.9                 | 56                            | 26.9               | 15.1          | 7.0                |
| Chicago - Mayfair | 485j 5Elson Ave    | 47       | 11.5  | 10-0.02   | 766614TT¢;015T.7755 | 605.110,1216. <b>152870</b> 5 | 6 <b>4 5192610</b> | D. NEDOCEDDAK | <b>3352076</b> 011 |

|                          |               |                 | Tabl             | e B15       |               |              |            |                      |  |  |  |  |
|--------------------------|---------------|-----------------|------------------|-------------|---------------|--------------|------------|----------------------|--|--|--|--|
|                          |               | (J              | 19<br>UNE - 4    | 99<br>AUGUS | T)            |              |            |                      |  |  |  |  |
|                          | VO            | LATILE<br>(part | ORGA<br>s per bi | NIC CO      | OMPO<br>rbon) | UNDS         |            |                      |  |  |  |  |
|                          |               |                 |                  |             |               |              |            |                      |  |  |  |  |
| STATION                  | ADDRESS       | 1-H0<br>1ST     | DUR<br>2ND       | 3-HC<br>1ST | DUR<br>2ND    | 24-H<br>1ST  | OUR<br>2ND | JUN - AUG<br>AVERAGE |  |  |  |  |
|                          |               |                 |                  |             |               |              |            |                      |  |  |  |  |
| 67 METROPOLIT            | CAN CHICAGO I | NTERST          | CATE (           | IL - IN     | )             |              |            |                      |  |  |  |  |
| COOK COUNTY              |               |                 |                  |             |               |              |            |                      |  |  |  |  |
| Chicago                  | 1000 E. Ohio  |                 |                  |             |               |              |            |                      |  |  |  |  |
| COMPOUNDS                |               |                 |                  |             |               |              |            |                      |  |  |  |  |
| Ethane                   |               | 50.9            | 48.7             |             |               | 17.7         | 15.2       | 6.4                  |  |  |  |  |
| Ethylene                 |               | 28.1            | 26.8             |             |               | 10.4         | 8.6        | 3.1                  |  |  |  |  |
| Propane                  |               | 70.4            | 40.3             |             |               | 9.7          | 7.8        | 3.6                  |  |  |  |  |
| Propylene                |               | 19.0            | 17.3             |             |               | 4.3          | 3.9        | 1.3                  |  |  |  |  |
| Acetylene                |               | 11.0            | 9.0              |             |               | 4.8          | 3.8        | 1.4                  |  |  |  |  |
| N - Butane               |               | 81.2            | 35.8             |             |               | 8.0          | 5.7        | 2.8                  |  |  |  |  |
| Isobutane                |               | 77.9            | 30.9             |             |               | 2.9          | 2.7        | 1.6                  |  |  |  |  |
| Trans - 2 - Butene       |               | 7.4             | 3.1              |             |               | 1.9          | 1.8        | 1.2                  |  |  |  |  |
| Cis - 2 - Butene         |               | 6.5             | 2.1              |             |               | 0.6          | 0.5        | 0.2                  |  |  |  |  |
| N - Pentane              |               | 32.7            | 31.2             |             |               | 8.6          | 7.9        | 2.7                  |  |  |  |  |
| Isopentane               |               | 74.1            | 68.3             |             |               | 21.4         | 18.9       | 6.4                  |  |  |  |  |
| 1 - Pentene              |               | 2.4             | 2.2              |             |               | 0.5          | 0.5        | 0.1                  |  |  |  |  |
| Trans - 2 - Pentene      |               | 4.1             | 3.4              |             |               | 0.7          | 0.7        | 0.1                  |  |  |  |  |
| Cis - 2 - Pentene        |               | 5.7             | 1.9              |             |               | 0.6          | 0.4        | 0.0                  |  |  |  |  |
| 3 - Methylpentane        |               | 12.1            | 11.0             |             |               | 3.9          | 3.9        | 0.9                  |  |  |  |  |
| N - Hexane               |               | 17.4            | 13.6             |             |               | 5.1          | 5.0        | 1.4                  |  |  |  |  |
| N - Heptane              |               | 7.7             | 6.2              |             |               | 2.3          | 2.3        | 0.4                  |  |  |  |  |
| N - Octane               |               | 3.9             | 3.3              |             |               | 1.0          | 1.0        | 0.1                  |  |  |  |  |
| N - Nonane               |               | 9.2             | 5.1              |             |               | 1.8          | 1.6        | 0.2                  |  |  |  |  |
| Cyclopentane             |               | 11.5            | 5.1              |             |               | 0.8          | 0.8        | 0.2                  |  |  |  |  |
| Isoprene                 |               | 14.9            | 2.5              |             |               | 3.2          | 0.4        | 0.2                  |  |  |  |  |
| 2,2 - Dimethylbutane     |               | 54.3            | 3.2              |             |               | 3.0          | 0.9        | 0.1                  |  |  |  |  |
| 2,4 - Dimethylpentane    |               | 13.1            | 5.9              |             |               | 2.7          | 2.1        | 0.3                  |  |  |  |  |
| Cyclohexane              |               | 5.2             | 2.7              |             |               | 1.0          | 0.8        | 0.1                  |  |  |  |  |
| 3 - Methylhexane         |               | 10.1            | 8.7              |             |               | 3.1          | 3.1        | 0.8                  |  |  |  |  |
| 2,2,4 - Trimethylpentane |               | 42.1            | 17.1             |             |               | 7.1          | 5.4        | 2.0                  |  |  |  |  |
| 2,3,4 - Trimethylpentane |               | 13.0            | 5.9              |             |               | 2.8          | 2.2        | 0.5                  |  |  |  |  |
| 3 - Methylneptane        |               | 4.9             | 2.9              |             |               | 1.0          | 0.9        | 0.1                  |  |  |  |  |
|                          |               | 4./             | 3.8<br>7 4       |             |               | 1.2          | 1.1        | 0.2                  |  |  |  |  |
|                          |               | 8.5<br>0.0      | 1.4<br>7.4       |             |               | 2.7          | 2.6        | 0.6                  |  |  |  |  |
|                          |               | 9.Z             | 7.1              |             |               | 2.7          | 2.5<br>0.6 | 0.0                  |  |  |  |  |
| 23 - Dimethylbutana      |               | 5.5<br>77       | ∠.⊃<br>ج ۵       |             |               | 0.0<br>2.2   | 0.0<br>2 1 | 0.1                  |  |  |  |  |
| 2.0 - Dimenyibularie     |               | 1.1<br>12.0     | J.0<br>17 1      |             |               | 2.2<br>6 0   | 2.1<br>5.0 | 17                   |  |  |  |  |
| 23 - Dimethylpentane     |               | 10.9            | 76               |             |               | 0.0<br>∕I 1  | 3.9        | 0.8                  |  |  |  |  |
| 2.0 - Dimenyiperitarie   |               | 26              | 1.0              |             |               | -+. I<br>0 6 | 0.5        | 0.0                  |  |  |  |  |
|                          |               | ∠.∪<br>1.9.3    | 15 7             |             |               | 0.0<br>∕1 7  | 0.5<br>4 0 | 1.5                  |  |  |  |  |
| DONZENE                  |               | 10.5            | 13.7             |             |               | 4.7          | 4.0        | 1.0                  |  |  |  |  |

## 1999 (JUNE - AUGUST)

## VOLATILE ORGANIC COMPOUNDS (parts per billion carbon)

|                         |         |       | HI      | GHEST | SAMPLES     | (ppbc)               |                |                                                  |
|-------------------------|---------|-------|---------|-------|-------------|----------------------|----------------|--------------------------------------------------|
|                         |         | 1-HC  | DUR     | 3-H   | OUR         | 24-H                 | OUR            | JUN - AUG                                        |
| STATION                 | ADDRESS | 1ST   | 2ND     | 1ST   | 2ND         | 1ST                  | 2ND            | AVERAGE                                          |
| COMPOUNDS               |         |       |         |       |             |                      |                |                                                  |
| Toluene                 |         | 120.5 | 46.6    |       |             | 17.2                 | 17.2           | 4.6                                              |
| Ethylbenzene            |         | 16.9  | 6.2     |       |             | 1.9                  | 1.8            | 0.4                                              |
| D - Xylene              |         | 8.5   | 6.3     |       |             | 2.4                  | 2.4            | 0.6                                              |
| //P Xylene              |         | 52.3  | 20.0    |       |             | 7.0                  | 6.8            | 1.9                                              |
| ,3,5 - Trimethylbenzene |         | 8.6   | 3.6     |       |             | 1.2                  | 1.0            | 0.2                                              |
| ,2,4 - Trimethylbenzene |         | 30.4  | 11.8    | 1     | .2Tc -0.043 | 35 T <u>oy</u> ≁()1. | 2242.55996TD.6 | 14.357 215w T( ) 081858 (1 .29.704 55 1) 128 (05 |
| I - Propylbenzene       |         | 4.4   | 3.4     |       |             | 0.6                  | 0.5            | 0.0                                              |
| sopropylbenzene         |         | 1.2   | 1.2     |       |             | 0.1                  | 0.0            | 0.0                                              |
| Styrene                 |         | 2.2   | 1.8     |       |             | 0.4                  | 0.2            | 0.0                                              |
| √-Decane                |         | 14.2  | 9.3 2.2 | 1.8   |             |                      |                |                                                  |

### 1999 (JUNE - AUGUST)

## VOLATILE ORGANIC COMPOUNDS (parts per billion carbon)

|                          | HIGHEST SAMPLES (ppbc) |            |             |      |     |            |                        |            |  |
|--------------------------|------------------------|------------|-------------|------|-----|------------|------------------------|------------|--|
|                          |                        | 1-H0       | JUR         | 3-H0 | JUR | 24-H       | OUR                    | JUN - AUG  |  |
| STATION                  | ADDRESS                | 1ST        | 2ND         | 1ST  | 2ND | 1ST        | 2ND                    | AVERAGE    |  |
|                          |                        |            |             |      |     |            |                        |            |  |
| LAKE COUNTY              |                        |            |             |      |     |            |                        |            |  |
| Zion                     | Camp Logan             |            |             |      |     |            |                        |            |  |
|                          |                        |            |             |      |     |            |                        |            |  |
| COMPOUNDS                |                        |            |             |      |     |            |                        |            |  |
|                          |                        |            |             |      |     |            |                        |            |  |
| Ethane                   |                        | 19.8       | 18.8        |      |     | 8.6        | 8.1                    | 4.2        |  |
| Ethylene                 |                        | 24.0       | 10.4        |      |     | 4.7        | 3.8                    | 1.3        |  |
| Propane                  |                        | 92.9       | 23.4        |      |     | 9.4        | 5.8                    | 3.1        |  |
| Propylene                |                        | 14.6       | 7.1         |      |     | 1.7        | 1.6                    | 0.5        |  |
| Acetylene                |                        | 7.1        | 3.4         |      |     | 1.8        | 1.1                    | 0.5        |  |
| N - Butane               |                        | 22.3       | 16.8        |      |     | 4.9        | 4.5                    | 1.9        |  |
| Isobutane                |                        | 38.2       | 7.6         |      |     | 5.2        | 2.3                    | 0.8        |  |
| Trans - 2 - Butene       |                        | 1.4        | 0.9         |      |     | 0.1        | 0.1                    | 0.0        |  |
| Cis - 2 - Butene         |                        | 2.1        | 1.1         |      |     | 0.1        | 0.0                    | 0.0        |  |
| N - Pentane              |                        | 68.1       | 32.7        |      |     | 6.4        | 6.0                    | 2.0        |  |
| Isopentane               |                        | 39.6       | 32.2        |      |     | 10.8       | 9.7                    | 3.7        |  |
| 1 - Pentene              |                        | 1.2        | 0.8         |      |     | 0.2        | 0.2                    | 0.1        |  |
| Trans - 2 - Pentene      |                        | 1.7        | 1.2         |      |     | 0.3        | 0.2                    | 0.1        |  |
| Cis - 2 - Pentene        |                        | 1.0        | 0.7         |      |     | 0.1        | 0.1                    | 0.0        |  |
| 3 - Methylpentane        |                        | 6.3        | 5.3         |      |     | 2.2        | 1.9                    | 0.4        |  |
| N - Hexane               |                        | 6.8        | 6.8         |      |     | 2.3        | 2.2                    | 0.7        |  |
| N - Heptane              |                        | 3.4        | 2.3         |      |     | 0.9        | 0.9                    | 0.2        |  |
| N - Octane               |                        | 1.8        | 1.7         |      |     | 0.4        | 0.4                    | 0.1        |  |
| N - Nonane               |                        | 2.4        | 1.4         |      |     | 0.5        | 0.4                    | 0.1        |  |
| Cyclopentane             |                        | 16.0       | 2.0         |      |     | 0.7        | 0.4                    | 0.1        |  |
| Isoprene                 |                        | 88.7       | 45.0        |      |     | 26.3       | 15.0                   | 5.3        |  |
| 2,2 - Dimethylbutane     |                        | 1.5        | 0.9         |      |     | 0.5        | 0.3                    | 0.1        |  |
| 2,4 - Dimethylpentane    |                        | 3.8        | 2.9         |      |     | 1.1        | 0.9                    | 0.3        |  |
| Cyclohexane              |                        | 1.3        | 1.2         |      |     | 0.4        | 0.3                    | 0.1        |  |
| 3 - Methylhexane         |                        | 3.5        | 3.2         |      |     | 1.3        | 1.1                    | 0.3        |  |
| 2,2,4 - Trimethylpentane |                        | 17.5       | 10.7        |      |     | 3.6        | 3.4                    | 1.0        |  |
| 2,3,4 - Trimethylpentane |                        | 7.9        | 4.5         |      |     | 1.1        | 1.0                    | 0.3        |  |
| 3 - Methylheptane        |                        | 1.3        | 1.0         |      |     | 0.2        | 0.2                    | 0.0        |  |
| Methylcyclohexane        |                        | 2.7        | 2.3         |      |     | 0.4        | 0.3                    | 0.1        |  |
| Methylcyclopentane       |                        | 3.5        | 2.9         |      |     | 1.3        | 1.1                    | 0.3        |  |
| 2 - Methylhexane         |                        | 2.6        | 1.3         |      |     | 1.1        | 0.9                    | 0.3        |  |
| 1 - Butene               |                        | 2.9        | 0.9         |      |     | 0.2        | 0.2                    | 0.1        |  |
| 2.3 - Dimethylbutane     |                        | 4.1        | 2.7         |      |     | 1.1        | 1.0                    | 0.3        |  |
| 2 - Methylpentane        |                        | 95         | 77          |      |     | 34         | 2.8                    | 1.0        |  |
| 2.3 - Dimethylpentane    |                        | 4.6        | 43          |      |     | 1.4<br>1.6 | <u> </u>               | 0.4        |  |
| 2 - Methylhentane        |                        | יד.<br>ה א | 0.7         |      |     | 0.2        | 0.2                    | 0.4        |  |
|                          |                        | 125        | 5.6         |      |     | 25         | 21                     | 0.0        |  |
| Toluene                  |                        | 62.0       | 22 R        |      |     | 2.0<br>8 3 | 2. <del>4</del><br>8.1 | 0.3<br>2 A |  |
| Ethylbonzono             |                        | 66         | 22.0<br>/ / |      |     | 1.0        | 12                     | 2.0        |  |
|                          |                        | 0.0        | 4.4         |      |     | 1.0        | 1.5                    | 0.4        |  |

### 1999 (JUNE - AUGUST)

### VOLATILE ORGANIC COMPOUNDS (parts per billion carbon)

|                           |         | HIGHEST SAMPLES (ppbc) |      |      |     |      |     |           |  |
|---------------------------|---------|------------------------|------|------|-----|------|-----|-----------|--|
|                           |         | 1-H0                   | DUR  | 3-H0 | OUR | 24-H | OUR | JUN - AUG |  |
| STATION                   | ADDRESS | 1ST                    | 2ND  | 1ST  | 2ND | 1ST  | 2ND | AVERAGE   |  |
| COMPOUNDS                 |         |                        |      |      |     |      |     |           |  |
|                           |         |                        |      |      |     |      |     |           |  |
| N - Nonane                |         | 12.9                   | 2.1  |      |     | 0.9  | 0.1 | 0.1       |  |
| Cyclopentane              |         | 18.0                   | 2.4  |      |     | 0.8  | 0.7 | 0.1       |  |
| Isoprene                  |         | 41.3                   | 16.3 |      |     | 12.8 | 4.1 | 1.9       |  |
| 2,2 - Dimethylbutane      |         | 5.2                    | 0.0  |      |     | 0.8  | 0.0 | 0.0       |  |
| 2,4 - Dimethylpentane     |         | 10.2                   | 6.1  |      |     | 0.6  | 0.4 | 0.0       |  |
| Cyclohexane               |         | 21.7                   | 12.2 |      |     | 1.3  | 0.9 | 0.2       |  |
| 3 - Methylhexane          |         | 15.6                   | 15.0 |      |     | 1.1  | 1.1 | 0.2       |  |
| 2,2,4 - Trimethylpentane  |         | 19.2                   | 13.3 |      |     | 1.4  | 1.1 | 0.3       |  |
| 2,3,4 - Trimethylpentane  |         | 7.0                    | 3.0  |      |     | 0.8  | 0.2 | 0.1       |  |
| 3 - Methylheptane         |         | 14.6                   | 3.7  |      |     | 0.7  | 0.2 | 0.0       |  |
| Methylcyclohexane         |         | 18.2                   | 5.4  |      |     | 1.4  | 0.6 | 0.1       |  |
| Methylcyclopentane        |         | 23.6                   | 7.2  |      |     | 1.9  | 1.0 | 0.1       |  |
| 2 - Methylhexane          |         | 32.2                   | 8.5  |      |     | 1.4  | 1.1 | 0.1       |  |
| 1 - Butene                |         | 20.4                   | 10.1 |      |     | 2.4  | 1.7 | 0.1       |  |
| 2,3 - Dimethylbutane      |         | 1.5                    | 0.6  |      |     | 0.2  | 0.1 | 0.0       |  |
| 2 - Methylpentane         |         | 5.4                    | 1.9  |      |     | 0.9  | 0.6 | 0.1       |  |
| 2,3 - Dimethylpentane     |         | 13.9                   | 10.9 |      |     | 1.1  | 0.5 | 0.1       |  |
| 2 - Methylheptane         |         | 4.0                    | 3.1  |      |     | 0.2  | 0.1 | 0.0       |  |
| Benzene                   |         | 87.6                   | 19.5 |      |     | 7.6  | 3.4 | 0.9       |  |
| Toluene                   |         | 43.6                   | 22.2 |      |     | 4.9  | 3.1 | 1.3       |  |
| Ethylbenzene              |         | 40.6                   | 5.8  |      |     | 2.4  | 0.3 | 0.2       |  |
| O - Xylene                |         | 11.8                   | 10.7 |      |     | 1.7  | 0.4 | 0.2       |  |
| M/P Xylene                |         | 62.6                   | 26.0 |      |     | 4.6  | 1.1 | 0.6       |  |
| 1,3,5 - Trimethylbenzene  |         | 19.5                   | 5.0  |      |     | 1.1  | 0.4 | 0.1       |  |
| 1,2,4 - Trimethylbenzene  |         | 63.0                   | 12.9 |      |     | 3.5  | 1.9 | 0.9       |  |
| N - Propylbenzene         |         | 9.4                    | 2.9  |      |     | 0.3  | 0.2 | 0.0       |  |
| Isopropylbenzene          |         | 4.9                    | 3.5  |      |     | 0.3  | 0.2 | 0.0       |  |
| Styrene                   |         | 33.3                   | 6.5  |      |     | 1.7  | 0.4 | 0.1       |  |
| N-Decane                  |         | 7.4                    | 2.9  |      |     | 1.8  | 0.1 | 0.1       |  |
| N-Undecane                |         | 222.9                  | 6.0  |      |     | 24.7 | 0.3 | 0.2       |  |
| O-Ethyltolune             |         | 13.7                   | 3.8  |      |     | 1.3  | 0.5 | 0.0       |  |
| M-Ethyltolune             |         | 36.7                   | 9.6  |      |     | 1.6  | 1.5 | 0.1       |  |
| P-Ethyltolune             |         | 18.0                   | 4.5  |      |     | 0.6  | 0.4 | 0.1       |  |
| M-Diethylbenzene          |         | 5.7                    | 4.3  |      |     | 0.6  | 0.5 | 0.0       |  |
| P-Diethylbenzene          |         | 62.6                   | 18.3 |      |     | 6.9  | 0.7 | 0.1       |  |
| 1,2,3 Trimethylbenzene    |         | 9.2                    | 6.6  |      |     | 1.1  | 1.5 | 0.3       |  |
| Formaldehyde <sup>1</sup> |         |                        |      | 5.1  | 4.2 |      |     | 2.6       |  |
| Acetaldehyde <sup>1</sup> |         |                        |      | 1.7  | 1.4 |      |     | 1.1       |  |

<sup>1</sup> Values in ppb (volume)

|                      | Table B16                             |                    |             |            |            |            |                      |  |  |  |  |  |
|----------------------|---------------------------------------|--------------------|-------------|------------|------------|------------|----------------------|--|--|--|--|--|
|                      |                                       | 1999<br>MERCU      | J <b>RY</b> |            |            |            |                      |  |  |  |  |  |
|                      | (nanograms per cubic meter)           |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       | TOTAL<br>NUMBER OF | 1.01        | HIGHEST S  | SAMPLES    | 4th        | ANNUAL<br>ARITHMETIC |  |  |  |  |  |
| STATION              | ADDRESS                               | SAWFLES            | 151         | 2110       | 310        | 401        |                      |  |  |  |  |  |
| 67 METROPC           | OLITAN CHICAGO IN                     | NTERSTATE (IL      | - IN)       |            |            |            |                      |  |  |  |  |  |
|                      | Y                                     |                    |             |            |            |            |                      |  |  |  |  |  |
| Alsip<br>Blue Island | 4500 W. 123rd St.<br>12700 Sacramento | 51<br>55           | 3.2<br>3.1  | 2.1<br>2.6 | 2.1<br>2.4 | 2.0<br>2.4 | 1.3<br>1.8           |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |
|                      |                                       |                    |             |            |            |            |                      |  |  |  |  |  |

# APPENDIX C PRECISION AND ACCURACY DATA SUMMARY AND TABLES

## C.1 PRECISION AND ACCURACY DATA SUMMARY

|                |                   | Ta                 | ble C1             |                          |                               |
|----------------|-------------------|--------------------|--------------------|--------------------------|-------------------------------|
|                |                   | 1<br>PRECISION D   | 999<br>ATA SUMMARY | Z                        |                               |
| PARAMETER      | SUMMARY<br>PERIOD | NUMBER<br>OF SITES | TOTAL<br>SAMPLES   | PROBABILITY<br>UPPER 95% | LIMITS (percent)<br>LOWER 95% |
| SITES OPERATE  | ED BY ILLINOIS    | EPA                |                    |                          |                               |
| Sulfur Dioxide | 1st Quarter       | 21                 | 252                | 2                        | -6                            |
|                | 2nd Quarter       | 21                 | 249                | 5                        | -6                            |
|                | 3rd Quarter       | 21                 | 261                | 5                        | -7                            |
|                | 4th Quarter       | 21                 | 240                | 3                        | -7                            |
|                | Year              |                    | 1002               | 4                        | -6                            |
|                |                   |                    |                    |                          |                               |

Ozone

|                |                            | Та          | ble C1        |              |                  |
|----------------|----------------------------|-------------|---------------|--------------|------------------|
|                |                            | 1           | 1999          |              |                  |
|                |                            | PRECISION D | DATA SUMMARY  | 7            |                  |
|                | SUMMARY                    | NUMBER      | TOTAL         | PROBABILITY  | LIMITS (percent) |
| SITES OPERATI  | ED BY COOK CO              | UNTY DEPAR  | RTMENT OF ENV | IRONMENTAL C | ONTROL           |
| Sulfur Dioxide | 1st Quarter<br>2nd Quarter | 6           | 78            | 5            | -3               |

|                      |                    |            | Table           | C <b>2</b> |            |           |         |           |           |          |
|----------------------|--------------------|------------|-----------------|------------|------------|-----------|---------|-----------|-----------|----------|
|                      |                    |            | 1999            | )          |            |           |         |           |           |          |
|                      |                    | ACCURAC    | Y DAT           | 'A SUN     | IMARY      | Z         |         |           |           |          |
|                      |                    |            |                 |            | PR         | OBABIL    | JTY LIM | ITS       |           |          |
|                      | SUMMARY            | NUMBER     | LEV             | EL 1       | LEV        | EL 2      | LEV     | EL 3      | LEV       | /EL4     |
| PARAMETER            | PERIOD             | OF AUDITS  | +95%            | -95%       | +95%       | -95%      | +95%    | -95%      | +95%      | -95%     |
| SITES OPERATI        | ED BY ILLINOIS     | S EPA      |                 |            |            |           |         |           |           |          |
| Sulfur Dioxide 258.7 | 750 T.50.750.75 re | TD0 Tc0 Tw | () <b>T</b> j E | Г 0.75     | 0.re 42 -0 | ).0716303 | Bj ET O | ).75 0.re | 42 -0.071 | 6303j ET |

Sulfur Dioxide 258.75 054 TD -0.T 0.75 65 0.75 12 r513 33 0 TD0 4th5 0

+92222000-

-+925%-

HINGONSTINGUTURT HTT 5 HE OSTER \$3 7 5 THE 224075 FIDE ALE 108025 5 36 0.75 12 r5 Tw () 5 0 -

# **APPENDIX D**

Table D1

|           |                                                                        |                                  | Table D2       | 2                  |                                 |                         |  |  |  |  |
|-----------|------------------------------------------------------------------------|----------------------------------|----------------|--------------------|---------------------------------|-------------------------|--|--|--|--|
|           | 1999<br>Estimated County Stationary Point Source Emissions (Targ Magr) |                                  |                |                    |                                 |                         |  |  |  |  |
| County    | Estina                                                                 | Particulate<br>Matter            | Sulfur Dioxide | Nitrogen<br>Oxides | Volatile<br>Organic<br>Material | )<br>Carbon<br>Monoxide |  |  |  |  |
| Adams     |                                                                        | 619.0                            | 6,269.0        | 1,053.4            | 2,275.6                         | 353.9                   |  |  |  |  |
| Alexander |                                                                        | 475.1                            | 460.5          | 258.7              | 63.3                            | 36.0                    |  |  |  |  |
| Bond      |                                                                        | 93.6                             | 5.3            | 39.0               | 25.5                            | 144.8                   |  |  |  |  |
| Boone     |                                                                        | 200.2                            | 620.2          | 290.2              | 1,211.6                         | 106.1                   |  |  |  |  |
| Brown     |                                                                        | 7.5                              | 0.0            | 1.7                | 0.3                             | 0.2                     |  |  |  |  |
| Bureau    |                                                                        | 318.6                            | 15.1           | 68.5               | 134.4                           | 28.8                    |  |  |  |  |
| Calhoun   |                                                                        | 24.1                             | 0.0            | 0.0                | 0.0                             | 0.0                     |  |  |  |  |
| Carroll   |                                                                        | 235.5                            | 121.4          | 60.3               | 174.4                           | 59.1                    |  |  |  |  |
| Cass      |                                                                        | 152.5                            | 0.1            | 23.4               | 13.9                            | 7.4                     |  |  |  |  |
| Champaign |                                                                        | 829.6                            | 2,139.0        | 2,379.8            | 1,090.0                         | 884.6                   |  |  |  |  |
| Christian |                                                                        | 1,161.6                          | 79,497.6       | 26,171.2           | 170.2                           | 652.6                   |  |  |  |  |
| Clark     |                                                                        | 173.3                            | 2.0            | 13.8               | 181.4                           | 11.7                    |  |  |  |  |
| Clay      |                                                                        | 84.5                             | 6.2            | 9.6                | 199.3                           | 6.7                     |  |  |  |  |
| Clinton   |                                                                        | 113.0                            | 362.7          | 1,302.1            | 180.3                           | 215.0                   |  |  |  |  |
| Coles     |                                                                        | 360.8                            | 119.8          | 283.2              | 1,343.7                         | 280.3                   |  |  |  |  |
| 6ook      | 2                                                                      | 1D 0 <b>026</b> e <b>187</b> 1.2 | 2 0            |                    | . 3                             |                         |  |  |  |  |

### 0.37849577578775787757975775797579757975797577507D0.07117c07w(152.5)Ti 2407D076070.28F57D-0ra07D07c0.28F5

|           |               | Table D2                 |               |               |          |
|-----------|---------------|--------------------------|---------------|---------------|----------|
| Fctima    | ted County St | 1999<br>ationary Point S | ource Emissio | ns (Tons/Vear | )        |
| 26.9      | ica county st | utional y 1 onit 5       |               |               | )        |
| County    | Particulate   | Sulfur Dioxide           | Nitrogen      | Volatile      | Carbon   |
|           | Matter        |                          | Oxides        | Organic       | Monoxide |
|           |               |                          |               | Material      |          |
| Hardin    | 100.7         | 35.5                     | 27.1          | 3.6           | 11.8     |
| Henderson | 140.2         | 0.1                      | 9.4           | 10.4          | 4.9      |
| Henry     | 291.5         | 26.9                     | 5,050.9       | 777.6         | 1,346.4  |
| Organic   |               |                          |               |               |          |
| Material  |               |                          |               |               |          |

Т

|                                                                | Table D2    |                |          |                     |          |  |  |
|----------------------------------------------------------------|-------------|----------------|----------|---------------------|----------|--|--|
|                                                                |             |                |          |                     |          |  |  |
|                                                                |             | 1999           |          |                     |          |  |  |
| Estimated County Stationary Point Source Emissions (Tons/Year) |             |                |          |                     |          |  |  |
| County                                                         | Particulate | Sulfur Dioxide | Nitrogen | Volatile            | Carbon   |  |  |
|                                                                | Matter      |                | Oxides   | Organic<br>Material | Monoxide |  |  |
| Morgan                                                         | 1,117.2     | 27,580.8       | 5,013.9  | 728.7               | 414.5    |  |  |
| Moultrie                                                       | 161.8       | 68.6           | 132.2    | 294.0               | 32.1     |  |  |
| Ogle                                                           | 380.7       | 37.9           | 619.5    | 1,191.3             | 314.1    |  |  |
| Peoria                                                         | 2,446.0     | 84,652.8       | 17,657.6 | 2,596.4             | 1,408.8  |  |  |
| Perry                                                          | 114.8       | 9.7            | 16.7     | 131.9               | 8.2      |  |  |
| Piatt                                                          | 268.5       | 0.6            | 1,876.9  | 120.4               | 276.1    |  |  |
| Pike                                                           | 218.0       | 2,767.6        | 840.6    | 32.9                | 123.7    |  |  |
| Pope                                                           | 0.0         | 0.0            | 0.0      | 2.1                 | 0.0      |  |  |
| Pulaski                                                        | 117.9       | 416.6          | 53.5     | 0.3                 | 0.2      |  |  |
| Putnam                                                         | 690.7       | 48,454.1       | 5,308.9  | 115.1               | 251.9    |  |  |
| Randolph                                                       | 3,287.3     | 273,965.9      | 58,102.0 | 286.9               | 1,223.5  |  |  |
| Richland                                                       | 56.3        | 0.5            | 21.9     | 89.1                | 11.2     |  |  |
| Rock Island                                                    | 875.8       | 1,715.5        | 892.7    | 2,864.0             | 848.7    |  |  |
| St. Clair                                                      | 1,924.1     | 3,193.5        | 770.8    | 1,581.1             | 213.2    |  |  |
| Saline                                                         | 273.9       | 9.6            | 6.2      | 12.2                | 20.5     |  |  |
| Sangamon                                                       | 1,114.0     | 49,668.1       | 12,414.5 | 611.3               | 853.6    |  |  |
| Schuyler                                                       | 89.1        | 0.0            | 25.2     | 12.2                | 0.4      |  |  |
| Scott                                                          | 107.0       | 8.2            | 28.3     | 29.2                | 8.9      |  |  |
| Shelby                                                         | 233.0       | 0.4            | 6.1      | 68.6                | 2.3      |  |  |
| Stark                                                          | 63.8        | 0.0            | 0.2      | 9.6                 | 0.2      |  |  |
| Stephenson                                                     | 212.7       | 3.4            | 166.2    | 1,156.5             | 137.6    |  |  |
| Tazewell                                                       | 2,976.0     | 28,748.0       | 34,086.6 | 668.9               | 1,146.8  |  |  |
| Union                                                          | 73.9        | 865.6          | 67.4     | 21.8                | 53.7     |  |  |
| Vermilion                                                      | 1,327.5     | 12,583.7       | 3,216.5  | 1,712.7             | 669.8    |  |  |
| Wabash                                                         | 296.9       | 198.3          | 106.4    | 29.6                | 29.0     |  |  |
| Warren                                                         | 263.4       | 271.6          | 71.5     | 47.7                | 43.7     |  |  |
| Washington                                                     | 320.3       | 0.1            | 38.1     | 188.8               | 17.8     |  |  |
| Wayne                                                          | 45.3        | 88.7           | 505.1    | 189.0               | 77.6     |  |  |
| White                                                          | 83.8        | 1.7            | 6.0      | 70.1                | 1.2      |  |  |
| Whiteside                                                      | 660.2       | 162.9          | 349.1    | 148.1               | 1,302.8  |  |  |
| Will                                                           | 6,102.2     | 90,403.0       | 42,345.  | 6,247.6             | 6,688.5  |  |  |
| Williamson                                                     | 456.6       | 12,087.3       | 7,264.8  | 257.4               | 213.0    |  |  |
| Winnebago                                                      | 875.0       | 112.7          | 919.4    | 2,113.1             | 579.0    |  |  |
| Woodford                                                       | 222.9       | 10.0           | 18.7     | 181.7               | 17.2     |  |  |

|      |                                          | Tal            | ble D3          |                                 |                    |  |  |  |
|------|------------------------------------------|----------------|-----------------|---------------------------------|--------------------|--|--|--|
|      | Annual Estimated Emissions Trends (Tons) |                |                 |                                 |                    |  |  |  |
| Year | Particulate<br>Matter                    | Sulfur Dioxide | Nitrogen Oxides | Volatile<br>Organic<br>Material | Carbon<br>Monoxide |  |  |  |
| 1981 | 276,529                                  | 1,577,992      | 826,427         | 270,814                         | 240,421            |  |  |  |
| 1982 | 184,716                                  | 1,404,040      | 693,054         | 233,951                         | 163,704            |  |  |  |
| 1983 | 185,931                                  | 1,363,292      | 759,453         | 207,405                         | 144,622            |  |  |  |
| 1984 | 204,490                                  | 1,435,066      | 746,367         | 197,418                         | 110,922            |  |  |  |
| 1985 | 174,102                                  | 1,406,300      | 715,556         | 191,070                         | 107,876            |  |  |  |
| 1986 | 164,246                                  | 1,400,761      | 676,181         | 180,148                         | 109,777            |  |  |  |
| 1987 | 166,292                                  | 1,379,407      | 644,511         | 176,406                         | 98,213             |  |  |  |
| 1988 | 162,124                                  | 1,393,628      | 653,521         | 165,792                         | 127,758            |  |  |  |
| 1989 | 212,778                                  | 1,254,474      | 610,214         | 193,499                         | 132,214            |  |  |  |
| 1990 | 266,888                                  | 1,272,445      | 623,466         | 170,378                         | 134,744            |  |  |  |
| 1991 | 220,903                                  | 1,239,690      | 619,161         | 154,008                         | 148,667            |  |  |  |
| 1992 | 163,529                                  | 1,228,949      | 610,214         | 156,867                         | 129,054            |  |  |  |
| 1993 | 142,123                                  | 1,170,549      | 556,460         | 152,288                         | 130,097            |  |  |  |
| 1994 | 133,275                                  | 1,158,555      | 555,893         | 140,492                         | 127,848            |  |  |  |
| 1995 | 119,726                                  | 1,273,786      | 505,966         | 141,381                         | 127,661            |  |  |  |
| 1996 | 105,842                                  | 1,183,278      | 495,267         | 139,445                         | 130,040            |  |  |  |
| 1997 | 100,038                                  | 1,197,404      | 510,729         | 136,541                         | 117,046            |  |  |  |
| 1998 | 99,619                                   | 1,196,461      | 509,676         | 134,924                         | 108,117            |  |  |  |
| 1999 | 90,316                                   | 1,085,828      | 421,993         | 99,121                          | 120,906            |  |  |  |

|                                                | Table D4              |                |                 |                                 |                    |  |  |  |
|------------------------------------------------|-----------------------|----------------|-----------------|---------------------------------|--------------------|--|--|--|
| Annual Source Reported Emissions Trends (Tons) |                       |                |                 |                                 |                    |  |  |  |
| Year                                           | Particulate<br>Matter | Sulfur Dioxide | Nitrogen Oxides | Volatile<br>Organic<br>Material | Carbon<br>Monoxide |  |  |  |
| 1992                                           | 95,903                | 1,045,101      | 381,939         | 143,755                         | 112,388            |  |  |  |
| 1993                                           | 90,322                | 1,001,123      | 418,211         | 108,809                         | 113,772            |  |  |  |
| 1994                                           | 88,916                | 967,213        | 404,488         | 108,777                         | 116,178            |  |  |  |
| 1995                                           | 67,048                | 812,284        | 367,803         | 102,942                         | 160,361            |  |  |  |
| 1996                                           | 63,766                | 914,276        | 407,654         | 86,939                          | 84,248             |  |  |  |
| 1997                                           | 57,166                | 974,197        | 404,291         | 75,812                          | 72,300             |  |  |  |
| 1998                                           | 61,113                | 964,250        | 376,662         | 77,572                          | 79,506             |  |  |  |
|                                                |                       |                |                 |                                 |                    |  |  |  |

# **APPENDIX E**

# THE BUREAU OF AIR/ DIVISION OF AIR POLLUTION CONTROL

- Proposing and supporting regulatory revisions where they are necessary to attain or maintain healthful air quality.
- Coordination with local planning agencies to ensure compatibility of air quality programs between state and

include locating and identifying sources of air pollution, determining the amount of pollution emitted and verifying the information which industry submits when applying for a permit. Field Operations also initiates much of the IEPA's enforcement activities when violations are discovered. Approximately 3,000

investigations and inspections are conducted each year.

A directory of the Division of Air Pollution Control follows.

### Table E1

## **BUREAU OF AIR**

Dave Kolaz, Bureau Chief (217) 785-4140

### **DIVISION OF AIR POLLUTION CONTROL**

Dennis Lawler, Division Manager (217) 785-4140

### AIR MONITORING SECTION

Terry Sweitzer, Manager (217) 782-5811

### AIR QUALITY PLANNING SECTION

Vacant, Manager (217) 524-4343

### COMPLIANCE AND SYSTEMS MANAGEMENT SECTION

Vacant, Manager (217) 782-5811

### PERMITS SECTION

Don Sutton, Manger (217) 782-2113

### FIELD OPERATIONS SECTION

Ed Bakowski, Manager (217) 524-8069

Vacant Region I 1701 South First Avenue Maywood, Illinois 60153 (708) 338-7900 Dick Jennings Region II 5415 North University Peoria, Illinois 61614 (309) 693-5461 John Justice Region III 2009 Mall Street Collinsville, Illinois 62234 (618) 346-5120