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ABSTRACT 

Indian Ridge Marsh is a remnant of a once larger wetland
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INTRODUCTION 

The history of Indian Ridge Marsh and the Calumet region of Chicago produced an 
ecological system that is quite different from the one that existed before development. The 
extensive wetlands that comprised the area have been reduced to smaller pockets isolated from 
each other by industrial, commercial, and residential areas and by transportation routes. 
Hydrologic flow patterns have been



HYDROLOGY 

Physical Description 

The Indian Ridge Marsh consists of several wetland pools connected to the Calumet 
River (figures 1 and 2). The marsh sits on a rectangular site that is 1 mile long north to south and 
a quarter mile wide east to west. It is bounded by the SEPA station of the MWRDGC and the 
Calumet River to the south, Torrence Avenue to the east, 116th Street to the north, and the 
Norfolk Southern Railroad line to the west. East 122nd Street sits on a causeway that divides 
the marsh into north and south pools connected by a culvert at the west end of the causeway. Six 
smaller pools along Torrence Avenue are isolated from the north and south pools by 
undeveloped causeways. 
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Figure 2. Bathymetric elevation map and sampling locations. 
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Flow Characteristics 

Flow occurs generally from north to south. Water enters the wetland system at the north 
pool with flow from both the east and the west. Smaller flows enter from the north. Three 
culverts are located beneath the railroad tracks approximately one block south of 116th Street. 
These culverts carry runoff from a drainage area estimated to be approximately 13 acres on the 
Lake Calumet Cluster Site. Flow from this culvert exceeds ~ 5 cubic feet per second (cfs) during 
large storm events. A culvert under 116th Street conveys runoff from an estimated one-acre 
drainage area along the railroad tracks to the north, although no measurable discharge was 
observed in this culvert during storm events. There does not appear to be any overland flow 
from the adjacent coke plant into the north pool. 

Between the north pool and Torrence Avenue there are an estimated 26 acres of upland 
dry area that drain into the north pool; the remaining upland dry areas drain into the east pools 
or onto Torrence Avenue where flow is collected by a storm drainage system. Assessing runoff 
patterns in the upland area was difficult due to the flat, but erratic, surface of the anthropogenic 
fill. The many wet spots and undulations in the topography would indicate that the site was not 
properly graded after the infilling. The inefficiency of the storm drains along Torrence Avenue 
caused constant flooding problems on the street, which made determining the amount of runoff 
to the drains impossible. 

Water from the north pool flows through the culvert under the 122nd Street causeway and 
into the south pool. This connecting culvert is often blocked by sediment or debris, which can 
cause the water level in the north pool to rise by several feet. After flowing through the south 
pool, the water flows through aintdg0.20599w ( sc 6.4Tw ( TorFl)Tj
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surface elevations of today, historic water surface elevations were more variable. During this 
historic time, the mouth of the river possibly was blocked periodically by sandbars and spits 
during low flows. In addition, none of the causeways or filled-in areas surrounding the marsh 
existed, allowing natural hydrologic retention functions to operate in the presettlement wetlands. 
Historical flow dynamics probably produced water levels that were both higher and more 
responsive to precipitation, even though there was a good connection with Lake Michigan to 
remove water from this area. 

Today the Calumet River is a deep navigation channel from Lake Michigan to the 
Thomas J. O'Brien Lock and Dam 1.5 miles south of the marsh outlet. The river has a very low 
discharge for its channel cross section, with flow reversals common due to the lock and dam 
operation and storms on Lake Michigan. A hydrograph of the Calumet River near the Indian 
Ridge Marsh outlet (figure 3) was developed by combining two sets of stage data. Daily stage 
data for the Calumet River on the lake side of the lock were available for 1986-1997 from the 
U.S. Army Corps of Engineers, Rock Island District Office. Missing data not exceeding three 
consecutive days were interpolated linearly. Lake Michigan elevation data at the Calumet 
Harbor were obtained from the National Oceanic and Atmospheric Administration (NOAA) for 
1978-1997. Using the data from both sets, the slope between the stations was computed. The 
elevation adjacent to the wetland for each day was then calculated as the slope multiplied by the 
distance from Lake Michigan to Indian Ridge Marsh and added to or subtracted from the lake 
elevation. 

Figure 3. Hydrograph of the Calumet River at the Indian Ridge Marsh outlet. 
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During normal and low-stage conditions, when the water level in the river is lower than 
the level in the wetland-9 0.2
0 Tc (,)Tj
-0.063 Tc 0.411 7where



Much of the large upland area in the north-central portion was filled



WATER QUALITY 

Existing Water Quality Data 

Surface water and ground-water samples were collected from Indian Ridge Marsh as a 
part of other past and existing ground-water a  0 Tc (R)rl and



Table 2. Indian Ridge Marsh Sampling Stations 

Station Description 

1 Second east pool north of 122nd Street and next to Torrence 
Avenue, near center of the pool next to a 10-inch diameter post 

2 North pool, 500 feet north of 122nd Street (4th electric pole) and 
in center of main channel east of railroad 

3 South pool, 400 feet south of 122nd Street (5th electric pole) and 
in center of main channel east of railroad 

4 Near south pool outlet, approximately midway between Station 3 
and the confluence with the Calumet River 

5 Northeast corner of uppermost SEPA station pool 

the SEPA station was chosen because the water has already undergone some aeration and it has 
the highest hydraulic head to best gravity feed water into the marsh. When the SEPA station was 
not operating, water samples also were collected from the Calumet River (April 15 and August 
20, 1997). 

In situ observations were made for water temperature, DO, and Secchi disc transparency 
in conjunction with each sample. A Yellow Springs Instrument model 58, with a 50-foot cable 
and probe, was used for DO measurements. The meter was calibrated at the site using the 
saturated air chamber standardization procedure. Temperature and DO profiles were measured 
when possible. The profile interval was 1 foot. Secchi disc transparency was determined using 
an 8-inch diameter Secchi disc, which was lowered until it disappeared from view, and the depth 
was noted. The disc was lowered further, then slowly raised until it reappeared. This depth was 
also noted, and the average of the two depths was recorded. 

Water Chemistry 

Grab samples for water chemistry analyses were taken near the surface (at a depth of 6 
inches) using 1000-milliliter (mL) pTw ( �L)Tj
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Table 3. Analytes, Method Detection Limits, and Analysis Methods 

Nutrients (mg/L) 
Nitrite and Nitrate, NO2-N+NO3-N 0.06 4500-NO3-F 
Ammonia + Ammonium, NH3-N + NH4-N 0.02 4500-NH3-N 
Total and Dissolved Phosphate-P 0.01 4500-P-B&E 
Total Kjeldahl Nitrogen, TKN 0.15 351.1 

Dissolved Cations/Metals (ug/L) 6010B 
Aluminum, Al 0.3 
Antimony, Sb 0.3 
Arsenic, As 0.2 
Barium, Ba 0.2 
Beryllium, Be 0.2 
Boron, B 5 
Cadmium, Cd 0.05 
Chromium, Cr 0.4 
Cobalt, Cb 0.05 
Copper, Cu 0.1 
Iron, Fe 10 
Lead, Pb 0.05 



certified laboratory. Organic analyses were performed according to U.S. Environmental 
Protection Agency (USEPA, 1996a) method SW846 in the 8000 series, i.e., 8260 and 8270. The 
USEPA (1996a) methods of SW 846-6010 were used for metal analyses. 

Quality Assurance and Control Summary 

A quality assurance project plan or QAPP (R.A. Locke II, 1997, unpublished) was 
developed for this project and submitted to the USEPA - Region 5 Office. The overall quality 
assurance objective for this study was to develop and implement field sampling and laboratory 
analysis procedures that would help accomplish the following study



where: 
S = original sample value. 
D = duplicate sample value. 

For concentrations (in the original sample) at or above ten times the MDL, an RPD of up to 20 
percent between a duplicate and original sample analysis was acceptable. For concentrations  tir63l Tc 0.78770 Tc (e)Tj
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Table 4. Water Quality Characteristics of Field Blanks 

4/15/97 5.76 2 1.2 4 2 2 2 0 0 <0.05 <0.02 <0.15 
5/13/97 5.89 2 1.8 0 0 0 0 <0.01 <0.01 <0.05 <0.02 0.38 
6/16/97 5.75 2 1.2 0 1 1 1 0 0 <0.06 <0.02 <0.15 
6/29/97 5.77 1.6 1.0 0 0 0 0 0.03 <0.01 <0.06 <0.02 <0.15 
7/20/97 5.61 0.8 1.8 0 0 0 0 0.01 <0.01 <0.06 <0.02 <0.15 
8/20/97 5.77 0 1.1 0 0 0 0 0 0 <0.06 <0.02 <0.15 
9/23/97 5.60 0 1.6 0 0 0 0 0 0 <0.06 <0.02 <0.15 
10/15/97 5.71 0 1.7 0 0 0 0 0 0 <0.06 <0.02 <0.15 

Note: Values are in mg/L unless otherwise indicated. 

field blank, limited validations of the accuracy of metals data can be made. Caution should be 
exercised when using data for aluminum,fiel datexercisea003 Tm
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under normal conditions. Data completeness of 90 percent was



unique characteristics of the marsh are produced by infilling with waste materials and by 
disruptions in the natural flow patterns. Although Indian Ridge Marsh is unique, it is still 
possible to use water-quality characteristics from a natural marsh and general-use standards to 
evaluate monitoring data collected in this study. 

Temperature 

Water temperature is one of the most important factors affecting the rate of chemical 
reaction and biological activities (growth) in an aquatic environment. In general, the reaction 
rate and/or the growth increases with increasing temperature. In a lake or reservoir, thermal 
stratification occurs during the summer period when the upper layer (epilimnion) is isolated from 
the lower layer of water (hypolimnion) by a temperature gradient (thermocline). Lakes will 
experience spring and fall turnovers. However, these are not significant for shallow wetland 
areas. In Indian Ridge Marsh the water depths in the three pools were less than 3 feet (tables 5-
7), mostly between 1.5 and 2 feet in depth, which allows wind mixing to overcome any thermal 



stratification that might develop. Water temperatures from the surface to the bottom were similar 
at each of t



Percent DO saturation values were determined from DO and temperature measurements 
using a conversion table (ASCE, 1960). The calculated values are included in tables 5-9. As 
shown in table 5, during the summer period from June 29-August 20, 1997, DO was 
undersaturated in the east pool; but for the rest of the monitoring period (70% of the time), it was 
supersaturated. This lower DO concentration was likely due to the influence of bottom sediment 
respiration, which is expected to peak during high summer temperatures. Most of the samples 
from the north and south pools were supersaturated. Saturation was over 200 percent at all five 
sites during the storm event on June 16 and at the south pool on September 23, 1997. The high 
and supersaturated DO concentrations in the pools were likely due to photosynthesis of observed 
algal populations. The Calumet River water in the SEPA pool had DO concentrations that 
hovered around the saturation level, except on May 30 and June 16, 1997, when the DO was 
considerably supersaturated. The samples at the SEPA station were collected from the water in 
the uppermost pool, which undergoes some aeration as





combined with other field observations may furnish information on suitable habitat for fish and 
other aquatic life, water quality and aesthetics, the state of the nutrient enrichment, and problems 
with recreational use impairment. 

Median values observed for Secchi disc transparency at the five sampling sites were 22.5, 
18.5, 20, 16.5, and 30 inches, respectively (table 10). In many cases, the Secchi disc was still 
visible when resting on the bottom. Secchi disc transparencies in the east pool on September 25 
and October 15, 1997, were very low, only 4 inches (table 5). During those sampling periods, 
water depth was only about one-hal288 
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Table 11. Ranges of Water Chemistry Results for Various Wetlands in Illinois 

Number of locations 8 3 6 2 1 
Number of samples 24 14 14 13 12 

Total Dissolved Carbon 37.3-265.6 27.2-60.1 39.2-156.6 73.9-130.7 75.3-164.1 
Dissolved Organic Carbon 14.9-75.2 13.4-27.1 14.2-80.5 14.2-30.7 46.4-85.7 
Total Nitrogen 0.38-9.06 0.50-3.9 0.68-5.34 0.05-8.74 0.48-2.12 
Total Kjeldahl Nitrogen 0.01-8.91 0.22-3.82 0.36-5.34 0.05-8.74 0.48-2.12 
Ammonia 0.01-3.18 0.06-0.81 0.01-0.33 0.01-2.17 0.01-0.10 15 
Nitrate 0.07-7.29 0.05-0.25 0.06-0.58 0.05-0.22 0.05-0.15 
Total Phosphorus 0.02-2.20 0.05-0.55 0.01-1.29 0.02-1.55 0.01-0.20 
Sulfate 4.5-129.0 0.65-22.8 0.3-135.0 5.8-52.7 3.3-319.0 500 
Fluoride <0.01-0.13 <0.01-0.07 <0.01-0.17 <0.01-0.29 <0.01-0.12 1.4 
Chloride 8-815 0.5-9.9 0.8-129.0 21.8-76.6 1.8-173.0 500 
Bromide <0.01-0.13 <0.01-0.22 <0.01-0.07 0.04-0.11 <0.01-0.10 
Total Alkalinity 8-815 20-176 38-311 232-421 46-314 
pH, units 6.0-9.5 6.2-8.7 



Table 12. Variation of Dissolved Oxygen (mg/L) with Depth 
in July and August 1997 

Surface 11.1 11.0 19.8 >20 13.2 19.6 4.4 
1-foot 6.3 7.6 10.8 12.9 10.8 11.8 4.0 
2-foot 3.0 6.2 7.0 7.7 9.1 3.5 

or absorbance. Turbidity is reported as nephelometric turbidity units (NTU). Generally, 
turbidity in lakes and wetlands is influenced by runoff containing high concentrations of 
suspended solids, resuspension of bottom sediments caused by flow or wind-induced turbulence, 
or blooms of algae in the water column. 

The median turbidity for the five sampling sites was 22.5, 10, 12, 11.5, and 12 NTU, 
respectively (table 10). High turbidity values (117 and 97 NTU) were observed on September 
23 and October 15, 1997, at the east pool and correspond to the very low Secchi disc 
transparency measurements made on the same date (table 5) and were related to sediment sources 
rather than algal blooms. At thTj
0 Tc (s)5j
-0.396nor -0.99899 Th(11 a n 1 1



solids section. In Indian Ridge Marsh, the north and south pools have significantly higher 
conductivity values than found in other natural m 0.72w0  Tz 0 Tr 0.99001 0 0 1 89.76001 706.32e797(n)Tj
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lakes usually have high alkalinity and thus are well buffered from the impacts of acid 
precipitation. Natural waters generally have a total alkalinity between 20 and 200 mg/L (APHA 
et al., 1992). 

The median total alkalinity of the east pool and the SEPA station were around 123 mg/L 
(as CaCO3) and varied little throughout the growing season (table 10). The median total 
alkalinity of 348 mg/L at the north pool was the highest, followed by 288 mg/L at the south pool 
and 136 mg/L at the outlet. The ranges of total alkalinity at the north and south pools also were 
greater than at the other three stations. Higher values were observed during coolery



Figure 4.



sampling site is in the main channel along the west side where any effect of runoff from the 
cluster site would be first felt. Mixing with more dilute waters in the central portions of the 
north pool (appendix A) may not occur until after the event is over. Because the cluster site is 
poorly graded, an unusual overflow event in the existing drainage on the site also may have 
occurred and flushed a considerable amount of dissolved solids off the surface or out of the many 
areas of standing water. As discussed in the nitrogen section, the composition of nitrogen 
species was more indicative of surface runoff than a large ground-water influx. 

The TS concentration may have been additionally affected by a slow rise in the water 
level of the Calumet River in the spring and summer of 1997. This rise, which peaked in July, 
caused water levels to increase in the marsh (tables 5 and 6) by direct inflow from the river 
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and increase the TSS concentration. High TSS concentration corresponded with low Secchi disc 
measurements at the east pool station. 

On the basis of the Illinois Lake Assessment Criteria (IEPA, 1978), water with a TSS 



gasification plants that produced coal gas and coke from coal (Davidson and Lerner, 1998). 
Ammonia wastes generated at the Acme Coke Plant north of Indian Ridge Marsh are treated, and 
the treated water is discharged into the sanitary sewer (David Holmberg, Acme Steel, 1999, 
personal communication). Ammonia has not been a problem in the Acme's permitted discharge 
into the Calumet River, which includes the storm water runoff from the plant along with 
significantly larger volumes of noncontact cooling water. 

The amount of ammonia-N (as N) reported in tables 4-10 is the total amount of nitrogen 
in both the ammonium ion (NH4

 +) form and the un-ionized ammonia (NH3
0) form. Eight often 

samples collected at the east pool had ammonia-N levels equal to or less than the detection limit 
of 0.02 mg/L (table 5). One sample collected from the SEPA station on September 23, 1997, had 
an ammonia-N concentration less than the detection limit. At the outlet, the maximum was 3.44 
mg/L and occurred on June 16, 1997 (table 8). Very high concentrations of ammonia-N were 
found in the samples from the north and south pools; four samples exceeded the Illinois 
ammonia-N standard of 15 mg/L (tables 6 and 7). Their medians and ranges were 3.25 mg/L and 
0.24-33.9 mg/L for the north pool and 3.08 mg/L and 0.69-31.9 mg/L for the south pool (table 
10). The highest values occurred on April 15 and May 13, 1997, for both stations. These high 
ammonia-N levels are much higher than the range of 0.01-3.18 mg/L found in other Illinois 
natural marshes (table 11). 

The temporal trend in ammonia-N for the north pool



Table 13. Ammonia-N Concentrations in Grab Samples from January 19, 1999 

Ice thickness Ammonia-N Conductivity 
Location (inches) (mg/L) (µmho/cm) pH 

116th St. <1 21 1831 7.46 
117th St. 12 3 1764 7.50 
118th St. <1 10 1874 7.49 
119th St. <1 7 1723 1 7 2



Only one observation at the outlet exceeded the chronic limit. The chronic high levels of un
ionized ammonia-N are considered toxic to fish. 

Total Kjeldahl



Nitrate and Nitrite. Nitrate is the end product of the aerobic stabilization of organic 
nitrogen, and as such it is



form adsorbed to soil particles. However, the major portion of phosphate-phosphorus



Table 14. Observed Metal Concentrations of Indian Ridge Marsh, 1997 

East Pool 5/13 960 1.8 2.3 23 <0.2 96 0.12 <0.4 0.22 3.5 930 

nn 0 



20, 1997, from the north and south pools also were greater than the maximum concentration 
(67.2 mg/L) for the other marshes. Concentrations of barium, cadmium, iron, magnesium, and 
manganese in Indian Ridge Marsh were found to be lower than the highest values reported for 
the other Illinois natural marshes. Concentrations of arsenic, chromium, nickel, and selenium 
were detected at levels below the detection limits for the other marshes shown in table 11. 
Antimony, cobalt, molybdenum, and vanadium also were detected, but there is no data from the99 Tw ( fro)Tj
0 Tc (m)Tj
0.028 Tc 0.88 T261 Tw ( n)Tj
0 Tc36 Tw ( dat)Tj
0 Ta 



Bosko (1998a) reported several additional compounds above USEPA (1996b) toxicological 
standards for aquatic life, suggesting there may be some increased risk to the ecosystem. Due 
to many other factors in an ecosystem, these lower thresholds are considered benchmarks and 
not standards, remediation goals, or sole measures of sediment toxicity. 

Potential Impact of Water Quality on Biodiversity 

The quality of the water in Indian Pudge Marsh may produce adverse effects on the 
diversity of the vegetation and may contribute greatly to the dominance of invasive and weedy 
species. Recently Roy F. Weston, Inc., performed an ecological analysis of several wetlands in 
the Calumet region for the City of Chicago (Bosko, 1998b). They reported finding 122 plant 
species in the wetland and upland areas of the northern portion of Indian Ridge Marsh. Of these 
species, 60 are normative to this area. A previous assessment by Southern (1983) found 178 
plant species, of which 71 were normative. General observation indicates that normative purple 
loosestrife (Lythrum salicaria) and native, but very weedy, common reeds (Phragmites australis) 
and cattails (Typha spp.) dominate the lowland areas. 

A high TDS level is one water-quality component that may have a significant effect on 
the vegetation. At the Sterne's Woods fen complex in McHenry County, Panno et al. (1999) 
found that contamination plumes with high concentrations of sodium and chloride in the 
discharging ground water had an adverse effect on the vegetation. Within the areas of the 
plumes, the diverse vegetation found in the rest of the fen was



Of the 175 bird species observed by Southern (1983) in the area over a 12-month period, 
77 are dependent upon wetland habitats. Fifteen of the observed species were on the Illinois 
threatened and endangered lists, and 11 of these depend on wetlands including the black-crown, 
night heron. However, the percentage of bird species nesting in the area was lower than 
expected, which Southern (1983) attributes to poor habitat quality caused by dense plant growth 
that leaves very little open water. 

The quality of the habitat for fish and birds in Indian Ridge Marsh also may be degraded 
by the hydrology and water quality of the site. Southern (1983) considered the fish habitat to 
be of low quality, with only five species found in the north pool. Sixty-seven percent of the 
individuals found in the north pool were green sunfish, a pioneering species with wide ecological 
tolerances, and 14 percent were carp. 

The biodiversity of the marsh may still be recovering from past activities that occurred 
earlier in the 20th century. The infilling that occurred on the upland areas likely sent large pulses 
of sediment and polluted water into the marsh. Weedy and invasive plant species were likely 
to have been the first species to colonize these disturbed areas. Infilling and the other waste 
disposal activities that occurred on the Lake Calumet Cluster Site also could have created 
damaging inflows of sediment and pollution. The marsh also may have been severely 20td specie beendamot 20tj
0 T2.64 Tm
47
-0.081 Tc -0.372 Tw ( cent087.64 Tm
436r)Tj
-0.081 Tc 2.314 Tw ( Sit)2.03 Tw (5j
0.054 R
0 T129 Tw ( mars)Tj
13e)Tj
0 T65(g)Tj
-0.006 Tc -0.447 T1 90j
0 Tc (6020.028 Tc 0.784 Tw ( th)Tj
0 tha)Tj
0 57
-0.081qualc 2.647 Tw (y.10S29478.64 Tm
(damot)Tj8 Tc 1.334 Tw ( anTc (e)TTm
(5
-0.081 Tc -0.372 Tw ( cn)Tj.03 Tw (5c (m)Tj
0.081 Tc 2.314 Tw ( Sit)29(e)TTm
(520.054 R
0 .784 Tw ( th)Tj
02tha)Tj
0 77 )Tj
0.1489 Tw ( coloniz)Tj27(e)TTm
(5(.)Tj
-r-0.tical(o)Tj
0.303 Tc 0.6712w ( hav)Tj
0 Tc (e)Tj
0w)Tj
30 T
-0.26improv706 Tw ( th)Tj
0)Tj
0 Tc (2 Tc (t)Tj
sincc -0.372 Tw ( cn)Tc (e)Tj
80.019 Tc 2.501 Tw ( Calum Tc 7c (y)3.c (m)Tj
1960.707 Tw ( sedimen)TTj
0 Tc 0j
0.032 wh( tha)Tj
c)Tj
-0.0
0 Tc (r)72.019 Tc 2.501 Tw ( Calume)T6in)Tj
078 Tm
(o)r
0 .784 Tw ( th)Tj-n)Tj.03 T1.59 (t)Tj
receiv706 Tw ( th)Tj
06712Tc (2 T(.)Tj
0.003 Tc 0 Tw 0.99 0 0 045
0 Tc 04
-0.139vo081 Tc 2.314 Tloniz)Tj
j
0 Tc j
-0.1398 Tc 1.334 Tw ( anTcw ( 20t28.019 Tcuntdamagin)Tj
0 Tc h)Tj-n)T3 Tc (o)T minvasiva v e 2 t h a  m a r s e  2 0 t - a n T 5 2 T c  ( a . 6 4 2 0 1 9  T c  2 . 5 0 1  T w  (  C a l u m e ) 0 T  T c  ( n ) 5 3 7 
 0 . 1 7 6 m T c  0 . 3 2 3  T w  (  m a ) T j 
 0 1 0  ( e ) T j 
 2 1 1 . 0 0 9  T 0 5 6  T c  4 . 2 1 2  T w  ( a n T 4 0  T c  T 8 0 . 0 1 9  T c a T c  2 . 3 1 4  T w  (  S i t T j 
 0  T c T . 7 ) 8 ) T j 
 0 .  2 . 5 0 1  T w  (  C a l u m  T 8 4 ) T j 
 0 . 0 o u t l e w  (  S - i t ) 1 2 T c  ( a . 8 5 j 
 0  T c  c o u l 0 6 6  T c  2 . 2  h ) T j a n T 4 0  T c  T 0 3 7 
 0 . 1 7 6 b . 5 0 1  T w  (  C a l u m e ) 0 6 e ) T j 
 a . 7 8  y  o c c 
 0  4 1 0  T c  T 8 0 5



discharging it over a series of waterfalls back into the river, a sufficient volume of water may be 
available to enhance Indian Ridge Marsh. 

Reducing the Amount of Ground- Water Inflow 

The water quality in the marsh could also be improved by reducing the amount of 
ground-water inflow. This could





for each day of the simulation as determined in the climate file. Topographic data, including 
watershed and wetland size and shape, are needed, as well as soil characteristics such as 
hydraulic conductivity, difference in volumetric water content at field capacity and wilting point, 
and water storage capacity of the soil. It also is necessary to know the depth to which the roots 
of the wetland plants extend. Management parameters can be used that define types and 
elevations of control structures incorporated into the wetland design. These control structures 
include a principal spillway that may or may not have an adjustable height, an emergency 
spillway, and an embankment. 

Summary files generated by SWAMPMOD contain inflows, outflows, and water 
elevations in the wetland averaged over various time intervals. Another output file provides data 
that can be used to plot hydrographs of storm events when rainfall exceeds a trigger level. A 
retention time file contains outflow rate, water velocity, and retention time data. The retention 
times calculated assume complete mixing in the wetland; and, although this may not be a perfect 
assumption, the data are still useful when a usefu ( fil)Tj
0 Tc (e)Tj
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Figure 6. Example of plant community succession, north 
pool of Indian Ridge Marsh: a) 1993, b) 1994, c) 1998. 

43 



Figure 7. The modeling process. 

(April) and only if the soil is dry more often than saturated. If the amount of time during the 
month the soil is dry exceeds the amount of time it is saturated, but the month is not April, that 
location will maintain its mixed system of wet and dry species. 

A mixed emergent community will be succeeded by a deep marsh community if more 
than 4 cm of water covers the soil for six growing-season months. Mixed emergents will be 
joined by drier species to make a mixed-plant community if the soil remains dry (more than 10 
cm above the surface of the water) for more than six months. If neither of these conditions 
occur, the mixed-emergent system will continue to dominate. 

Deep marsh species will be joined by shallower species to make up a mixed-emergent 
community if,em17(e)Tj
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Data Preparation 

As described earlier, SWAMPMOD requires site data for calibration and operation. 
Some of the data used to run the model require on site data collection; other input data may be 
estimated. In the case of estimated data, a range of values was used in this study to determine 
the significance of any errors that might be introduced by estimation. The modeling exercise 
considered the north and south pools of thea exerciso o e



Figure 8. Statistical elevations of the Calumet River at Indian Ridge Marsh. 

The topographic data for the wetland area were developed based on surveys of the area. 
For some parameters in this file, such as root depth and difference between water content at field 
capacity and water content at wilting point, typical values were assumed to be applicable. 
Parameters needed to determine lateral seepage from the wetland were based on the assumption 
that water would be seeping out at the south end to the river when the river is lower than the 
water level in the wetland. 

The management file varied significantly based on the fili



the 20-year simulation period. To choose the eight elevations analyzed and indicated on the 
vertical axis (appendix E), the wetland was divided into eight equivalent sized areas defined by 
elevation. The elevation in the middle of each zone was chosen to represent the area. For 
example, the bar labeled with the lowest elevation (appendix E) represents the deepest eighth of 
the marsh; that with the highest elevation represents the shallowest eighth of the marsh, and each 
other bar represents an eighth in between. The horizontal axis (appendix E) is eleFo



Effect of Flooding 

A second simulation was done to determine the effect of adding a spillway weir at an 
elevation of 583 feet and an emergency spillway at 584 feet located at the existing outlet channel. 
There are several reasons for interest in such a scenario. First, interest has been expressed in 
creating more open water in the marsh to expand the hunting ground for birds that feed on fish. 
Second, flooding may be included in a possible schemes to help control invasive species and 
allow other species the opportunity to colonize. Large die-offs of common reeds (Phragmites 
australis) were observed in Big Marsh when it became flooded in late 1998 and early 1999; 
however, without other measures the same infested areas may be recolonized by common reeds 
in late 1999 and early 2000. Third, a potential scheme to move more water through the system 
and improve the water quality would add water from the SEPA station and move the marsh 
outlet from the south end to the northwest corner. The marsh could then drain into Big Marsh, 
whose elevation at the point closest to Indian Ridge Marsh is approximately 583 Tj
-0.21899 Tc 1.618 Tw ( frose)Tan1 0 0 1 5 2000570 Tc (h)
0 T0.14101 ddress -0.513 Tw ( th)heTj
0.04201 Tc 1.95799 Tw ( SE3s)Tj
0 T1eT6h  n o r t h w T j 
 0  T c  c  ( t 8 
 - 0 . 2 1 8 9 9  T c  1 . 6 1 8  T w  (  f o x i m 7  T c  c  ( 0 . 0 1 9  T 0 3 2 9  T c  1 . 7 6 3  T ;  (  m o r ) T T c  ( e ) T 6 2 0 . 0 1 9  T c  - 0 . 2 4 6  T w  (  n o r t h 7 3 7 . 1 4 1 0 1  d d i  T c n a l  (  e n ) T j 7 2 
 0  T c  ( r ) 0  T 0 . 1 4 1 0 1 e f f e c  - 0 . 5 1 3  T w  (  t h ) h ) T 3 3 0  T c  ( r ) 7 6 0 . 1 8 8  T c  - 0 . 1 6 4  T w  (  t h ) T j 
 1 4 c  ( e ) T 6 2 3 . 1 4 1 0 1  d d i c  1 . 5 2 2 9 9  T g  w a t e ) T j 
 0  T c  0 0 1  5 5 9 . 2 0 0 0 1  T m 
 ( a n ) T j 
 0  T c  0 4 ) T j 
 0 . 0 9 5 9 9 1  T c  0 . 9 0 3  T w  (  q u a l i t ) 4 T c  ( e ) T 5 j 
 0 . 0 1 6 0 1 c  0 . 6 5 4 0 1  T w  (  p o i n 9 0  T c  ( e ) T j 3 . 1 4 1 0 1 d i s c u s s  - 0 . 5 1 3  T w  (  a d ) T j 
 0 d ) T j 
 0  ( h ) T 0 8 . 0 4 9  T c  1 . 9 9 1  T w  n  t h ) h e0880.04201 Tc 1.95799 Tw ( SE160 Tc (eA)Tj
-0.03799 Tc 1.696 Tw ( s)T0)er aj
-0.0(e)T52Tj
0.15sec Tcc 1.52299 T. wateET
EMC 
/Span <</MCID 2 >>BDC 
BT
/TT1 



Table 15. Summar



Table 15. (Concluded) 



the wetland that were previously held back by the higher outlet channel bottom is released 
through the lower weir. The only significant change



A comparison of the statistical hydroperiods for a scenario with soil addition and a weir 
with a simulation of current conditions shows that the wet periods would be unaffected by the 
weir as in the other cases in which a weir was modeled. Under drier conditions, the level of 
water in the wetland would be higher because ground water would still be able to seep in, and 
outflow would be restricted to only seepage loss. The results of this modeling indicate that, at 
equal elevations, the wetland would be generally wetter than the existing situation. However, 
comparing only conditions at equal elevations obscures the effect of raising the wetland by 
adding the soil. When the total area of the wetland is divided evenly by area and vegetation is 
compared, the modifications described seem to favo





The most significant effect of adding the water that is apparent from SWAMPMOD 
would be the reduction in



wetlands. According to his studies, the water level in a wetland along the Great Lakes should 
be relatively low in the winter, rise roughly 2 feet through the early spring and summer, and 
decrease by late summer. The SWAMPMOD estimates of the current hydroperiod do show an 
average rise in the spring and summer, but this rise is only on the order of half a foot. To 
achieve a more suitable profile, this rise should be increased significantly. 

The first attempt to mimic the profile proposed by Busch (1990) was made by simply 
simulating the installment of an adjustable weir similar to those described previously. The 10-
foot wide weir was designed to be kept at 580.5 feet, the current outlet elevation, during the fall 
and winter months and raised to 582.5 feet from April 1st through August 15th. The resulting 
hydroperiod, shown in appendix D, indicates that the weir alone would not be enough to raise 
the median water level by 2 feet. The water rose less than 1 foot for the median hydroperiod and 
even less for drier years. A comparison of the predicted vegetation during this simulation with 
the simulation of the current conditions shows that more open water and mixed emergent 
vegetation would be expected with considerably less time and space occupied by wet meadow 
communities. 

Several additional simulations were run in an attempt to achieve Busch's (1990) ideal 
hydroperiod that combined the use of an adjustable weir with the addition of water from the 
SEPA station. One of the hydroperiods that came reasonably close to this ideal was obtained by 
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those used by Poiani and Johnson (1993), the concept mayneentn



DISCUSSION 

The 92-acre Indian Ridge Marsh consists of several wetland pools connected to the 
Calumet River. The marsh is surrounded by additional wetlands, roads, railroads, a coke plant, 
the Lake Calumet Cluster Site, and a SEPA
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The hydrologic modeling of Indian Ridge Marsh was conducted to characterize the 
hydrologic conditions and the effect of hydrology on retention times and on different plant 
communities in the wetland. The hydrologic model was constructed using SWAMPMOD 
(Konyha et al., 1995), which is a continuous hydrologic simulation that evaluates the hydrology 
of a wetland system using several years of daily climate and adjacent stream elevation data. The 
inflows into the model include precipitation, surface and subsurface runoff from the watershed, 
and seepage from ground water into the wetland. Outflows from the wetland include 
evaporation, transpiration, flow through a principal spillway, outflow over an emergency 
spillway, and lateral seepage leaving the wetland. Using the results from the hydroperiods 
produced by SWAMPMOD, a separate vegetation model was used to estimate the e x t e n t of the 
different vegetation zones that d e v e l o p at d i f f e r e n t elevations based on the hydrologic conditions. 
The vegetation model is based on a set of general rules that relate water levels in a wetland over 
time to conditions that support seedling success and plant development 

eees wetnd 194atn 09conditionTc  (s)Tj
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CONCLUSIONS 

Indian Ridge Marsh, a valuable ecological resource to the Chicago region, is currently 
affected by several water-quality problems. If these problems could be successfully addressed, 
the quality of this resource could be substantially improved. Reducing the ammonium influx 
could improve the habitat for fish and other aquatic life; and reducing the total solids influx 
could improve the chances for survival of native wetland plants. Potential steps to remediate 
the water quality problems include: 

adding water from the SEPA station or the Calumet River, 
reducing the amount of ground-water inflow, 
controlling the runoff from 122nd Street, 
adding clean soil and removing fill, and 
placing a weir across the outlet. 

The hydrologic modeling of the marsh shows that the proper hydroperiod currently exists to 
support a diversity of wetland plant communities, and that the potential for these communities 
could be maintained with properly designed remediation schemes. 

The information contained in this report builds toward a naturalization design for Indian 
Ridge Marsh. A final design needs to couple community visions for the site with relevant 
engineering elements to produce final rehabilitation designs that are robust in this highly 
modified environment. As the ecological objectives and designs for the site become more 
defined, further sampling, modeling, and designing will be required. Soil and water quality 
issues, as well as biotic factors such as competition for resources by invasive species, need to be 
addressed. Rehabilitation strategies that may alter topography and/or water flow quantities 
should continue to be evaluated using the SWAMPMOD and vegetation modeling tools to 
estimate potential diversity that would result in the wetland. 
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Appendix A. (Concluded) 

Ground Water Indian Ridge Marsh 
Well Well Well Well East East North Cental Central South 

Site 17a 18a 20b 70 Poolc Pool Pool Poold 
Poole Pool Outlet 

Sample Date 5/96 6/96 91-94 7/91 4/95 4/95 4/95 4/94 4/95 4/95 4/95 

Trace Metals (ug/L) 
Antimony <100 <100 <100 <150 <100 <100 <100 <100 <100 187 
Arsenic <40 <40 <40 <80 <40 <40 <40 <40 <40 <40 
Barium 23 22 96 451 6 21 90 51 75 113 95 
Beryllium <1 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 
Cadmium <4 <4 <4 <6 <4 <4 <4 <3 <4 <4 <4 
Chromium <4 8 <4 11 <4 <4 <4 <5 <4 <4 <4 
Cobalt 6 8 <4 <6 <3 <3 <3 <5 <3 <3 4 
Copper <3 <3 <3 <1 <3 <3 <3 <5 <3 <3 <3 
Lead <12 <12 <12 <27 <12 <12 <12 <5 <12 <12 <12 
Lithium 14 21 227 40 4 <4 48 24 67 57 
Mercury <20 <20 10 <30 <0.5 <0.5 <0.5 <0.05 <0.5 <0.5 <0.5 
Molybdenum <6 <6 <6 17 <6 7 <6 6 <6 <6 
Nickel <6 6 15 <18 <6 <6 <6 <15 <6 13 8 
Selenium <50 <50 <50 <110 <50 62 <50 <50 <50 <50 
Silver <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 
Thallium <50 <50 <50 <240 <50 <50 <50 58 <50 <50 
Tin <40 <40 <40 <60 <40 <40 <40 <40 <40 <40 
Titanium 12 13 4 3 3 10 8 6 8 5 
Vanadium 4 4 <3 <11 <3 4 3 <5 <3 <3 3 
Zinc 55 91 78 <3 11 16 15 <100 19 15 7 

Notes: 
Values are in mg/L unless otherwise indicated. 
a Median of 6 multi-level sampling ports. 
b Median of 4 samples collected on 9/91, 6/92, 6/93, and 9/94. 
c First east pool north of 122nd Street. 
d South-central pool of the north pool. 
e Central pool of the north pool 
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Appendix B.



Appendix C. Volatile and Semivolatile Organic Compound Analysis 

Abbreviations 

ACD =Acid compounds 
BN = Base neutral 
TOC = Total organic carbon 
TOX = Total organic halides 
PST = Pesticide 
VOC = Volatile organic compounds 
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ILLINOIS STATE WATER SURV 
SHUNDAR UN 
PO BOX 697 
PEORIA IL 61602 

Purchase Order No: RUJ 6395 D 
Date of Report: 9/24/97 

Sample Number: 97090112 
Date Collected: 9/2/97 
Date Recafved 9/3/97 
Description: STATION #2 INDIAN RIDGE WETLAND 

Analysis Results Unit of Measure 

Inorganics 
INO 
TOC 21 mg/l 
TOX 0.05 mg/l 

Organics 
ACQ 
2,3,4,6-Tetrachlorophenol <0.10 mg/l 

2,4,5-Trichlorophenol <0.010 mg/l 

2,4,6-Trichlorophenol <0.010 mg/l 

2,4-Dichlorophenol <0.010 mg/l 

2,4-Oimethylphenol <0-010 mg/l 
2,4-Din'rtrophenol <0.050 mg/l 
2,6-Dichlorophenol <0.010 mg/l 
2-Chlorophenol <0.010 mg/l 

2-Methylphenol(o-cfesol) <0.010 mg/l 

2-Nitrophenol <0.010 mg/1 

3-Methyiphenol <0.010 mg/1 

4,6-Dinitro-2-methylphenoI <0.050 mg/l 

4-Chloro-3-methylphenol <0.010 mg/l 

4-Methylphenol(m. p-cresol) <0.010 mg/l 

4-Nitrophenol <0.050 mg/l 

Benzoic Acid <0.050 mg/l 

Pentachlorophenol <0.050 mg/l 

Phenol <0.010 mg/l 
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Analysis Results Unit of Measure 

BN 
1,2,4,5-Tetrachlorobenzene <0.010 mg/l 
1,2,4-TrichIorobenzene <0.010 mg/l 
1,2-Dichlorobenzene <0.010 mg/l 
1,2-Diphenylh.ydrazina <0.010 mg/l 
1,3,5-Trinitrobenzene <0.010 mg/l 
1,3-Dichlorobenzene <0.010 mg/l 
1,4-Dichlorobenzene <0.010 mg/l 
1,4-Naphthoquinone <0.010 mg/l 
1-Chloronapthalene <0.010 mg/l 
1-Naphthylamine <0.010 mg/l 
2,4-Dinitratoluane <0.010 mg/l 
2,6-Dinrtrotoluene <0.010 mg/l 
2-Acstylaminofluorene <0.010 mg/l 
2-Chloronaphthalene <0.010 mg/l 
2-Methytnaphthalene <0.010 mg/l 
2-Naphthyiamine <0.010 mg/l 
2-Nitroaniline <0.010 mg/l 
2-Picoline <0.010 mg/l 
3.3-Dichlorobenzidine <0.010 mg/l 
3,3-Dimethylbenzidine <0.010 mg/l 
3-Methyicholanthrene <0.010 mg/l 
3-Nitroaniline <0.010 mg/l 
4-Aminobiphenyl <0.010 mg/l 
4-Bromophanyl-phenylether <0.010 mg/l 
4-Chloroaniline <0.010 mg/l 
4-Chlorophanyl-phenylether <0.010 mg/1 
4-Nitroaniline <0.010 mg/l 
4-NitroquinoIine-1-oxide <0.010 mg/l 
5-Nitro-o-toluidine <0.010 mg/l 
7,12-Dimethytbenz(a)anthracane <0.010 mg/l 
a,a-Oirnethylphenethylamine <0.010 mg/l 
Acenaphthens <0.010 mg/l 
Acenaphthylene <0.010 mg/l 
Acetophenone <0.010 mg/l 
Aniline <0.010 mg/l 
Anthracene <0.010 mg/l 
Aramita <0.050 mg/l 
Benzidine <0.050 mg/l 
Benzo(a)anthracene <0.010 mg/l 
Benzo(a)pyrene <0.010 mg/l 
Benzo(b)fluoranthene <0.010 mg/l 
Benzo(g.h.i)perylene <0.010 mg/l 
Benzo(k)fluoranthene <0.010 mg/l 
Benzyl Alcohol <0.010 mg/l 
Bis(2-chloroethoxy)rnethane <0.010 mg/l 
Bis(2-chloroethyl)ether <0.010 mg/l 
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Analysis Results Unit of





Appendix D. Statisticali



Figure Dl. Current conditions. 

Figure D2. Weir at 583 feet. 
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Figure D3. 5-foot adjustable wier at 580 feet dropped 
to 579 feet in July-August. 

Figure D4. 10-foot adjustable wier at 580 feet 
dropped to 579 feet in July-August. 
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Figure D5. Altered topography. 

Figure D6. Topographic change and weir placement at 581 feet. 
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Figure D7. North pool with an open culvert. 

Figure D8. North pool with a constricted culvert. 
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Figure D13. Addition of weir ande.5080/Fi
0nf r25 D13d.





Figure D17. Current conditions with seepage inflow of 37,000 ft3/day. 

Figure D18. Current conditions with seepage inflow of 13,900 ft /day. 
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Figure D19. Current conditions with hydraulic conductivityf4 in./hr. 

Figure D20. Current conditions with hydraulic conductivityf 2.9 in./hr. 
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Figure D21. Current conditions with watershed of 30 acres. 

Figure D22. Current conditions with watershed of 50 acres. 
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Appendix E. Predicted Vegetation at Incremental Areas 

El Current conditions. 
E2 Weir at 583 feet. 
E3 Weir at 583 feet and ~2 cfs of SEPA station water added. 
E4 5-foot adjustable weir at 580 feet dropped to 579 feet in July-August. 
E5 10-foot adjustable weir at 580 feet dropped to 579 feet in July-August. 
E6 Altered topography. 
E7 Topographic change and weir placement at 581 feet. 
E8 North pool with an open culvert. 
E9 North pool with a constricted culvert. 
E10 South pool with an open culvert. 
E11 South pool with a constricted culvert. 
El 2 Addition of weir and water for the "ideal" hydroperiod 1. 
El 3 Addition of weir and water for the "ideal" hydroperiod 2. 
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Figure El. Current conditions. 



Figure E3. Weir at 583 feet and ~2 cfs of SEPA station water added. 

Figure E2. Weir at 583 feet. 



Figure E4. 5-foot adjustable weir at 580 feet dropped to 579 feet in July-August. 

Figure E5. 10-foot adjustable weir at 580 feet dropped to 579 feet in July-August. 



Figure E7. Topographic change and weir placement at 581 feet. 

Figure E6. Altered topography. 



Figure E8. North pool with an open culvert. 

Figure E9. North pool with a constricted culvert. 



Figure E10. South pool with an open culvert. 

Figure E11. South pool with a constricted culvert. 



Figure E12. Addition of weir and water for the "ideal" hydroperiod 1. 

Figure E13. Addition of weir and water for the "ideal" hydroperiod 2. 



Appendix F. Retention Time Distributions 

Fl Current conditions. 
F2 Current conditions with ~2 cfs SEPA station water added. 
F3 Current conditions with ~4 cfs SEPA water added. 
F4 Weir at 583 feet. 
F5 Weir at 583 feet with ~2 cfs SEPA station water added. 
F6 Weir at 583 feet with ~4 cfs SEPA station water added. 
F7 5-foot adjustable weir at 580 feet dropped to 579 feet in July-August. 
F8 10-foot adjustable weir at 580 feet dropped to 579 feet in July-August. 
F9 10-foot adjustable weir at 580 feet dropped to 579 feet in July-August with ~2 cfs SEPA 

station water added. 
F10 10-foot adjustable weir at 580 feet dropped to 579 feet in July-August with ~4 cfs SEPA 

station water added. 
F11 Altered topography. 
F12 Topographic change and weir placement at 581 feet. 
F13 North pool with an open culvert. 
F14 North pool with a constricted culvert. 
F15 South pool with an open culvert. 
F16 South pool with a constricted culvert. 
F17 Addition of weir and water for the "ideal" hydroperiod 1. 
F18 Addition of weir and water for the "ideal" hydroperiod 2. 
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Figure Fl.



Figure F7. 5-foot adjustable weir at 580 feet 
dropped to 579 feet in July-August. 

Figure F8. 10-foot adjustable weir at 580 feet 
dropped to 579 feet in July-August. 

Figure F9. 10-foot adjustable weir at 580 feet 
dropped to 579 feet in July-August with ~2 cfs 

SEPA station water added. 

Figure F10. 10-foot adjustable weir at 580 
feet dropped to 579 feet in July-Aug with ~4 

cfs SEPA station water added. 

Figure F11. Altered topography. Figure F12. Topographic change 
and weir placement at 581feet. 
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Figure F13. North pool with an open culvert. Figure F14. North pool with a constricted 
culvert. 

Figure F15. South pool with an open 
culvert. 

Figure F16. South pool with a constricted 
culvert. 

Figure F17. Addition of weir and water 
for the "ideal" hydroperiod 1. 

Figure F18. Addition of weir and water for 
the "ideal" hydroperiod 2. 
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