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ABSTRACT 

The airborne concentrations and sources of PM10 mass and 26 elements were evaluated in 
southeast (S.E.) Chicago for the period from 1985 to 1988. X-ray fluorescence and neutron 
activation analysis were used for elemental determinations, and a weight-of-evidence 
receptor modeling approach — wind trajectory analysis, enrichment factors, factor analysis 
and chemical mass balance — was used to provide source identification. Particle 
concentrations remained in compliance of the PM10 National Ambient Air Quality Standard 
(NAAQS) throughout the study period. Receptor modeling analysis identified steel and 
steel-related industries as a substantial source of airborne PM10, however, the impact of 
stack emissions is minor in relation to industrial surface dust emissions. The control of 
industrial surface dust emissions ofy iuTw-0.3572.451 Tc( dus) Tj23.619 C h i c a d r  t, s u r f a c  airborn1-l d u s e 



ACKNOWLEDGMENTS 

Support for this work has been provided by the



INTRODUCTION 

A new PM10 National Ambient Air Quality Standard (NAAQS) has replaced total suspended 
particulates (TSP) as the federal ambient standard for particulates. PM10 represents the 
inhalable fraction of TSP, particles ≤10 micrometers (μm); of which particles > 5 μm are 
generally deposited in the nose and throat and particles < 5 μm reach further into the 
respiratory tract to the lungs. 

Southeast Chicago has some of the worst known air quality in Illinois in terms of criteria 
pollutants. Several Illinois Environmental Protection Agency (IEPA) monitoring sites in S.E. 
Chicago have regularly recorded TSP excursions above the old TSP NAAQS. Based on 
earlier work by Kolaz et al. (1986) showing PM10 particles to constitute 60 percent of TSP 
in urban areas in Illinois, sites in S.E. Chicago are anticipated to exceed the PM10 NAAQS. 
Southeast Chicago has been designated as a Group 1 area, having a greater than 95 percent 
probability of exceeding the standard (IEPA, 1988). 

In addition to criteria pollutants such as TSP and PM10, airborne concentrations of 
individual elements (e.g.,Cr, Cd, Mn, and Pb) may be high enough to pose a health hazard 
(Thomson et al., 1985). At present, ambient air quality standards exist only for lead (IEPA, 
1988). 

The overall objective of the project was to identify important sources of inhalable PM10 

particles (PM10) in S.E. Chicago. A receptor modeling approach was used, which provides 
an in-depth chemical and physical characterization of individual elements and their sources. 
Preliminary results were discussed in four interim reports (Vermette et al.,1988;Vermette 
and Williams, 1989a; Vermette and Williams, 1989b; and Vermette et al., 1990). This final 
report contains project findings, conclusions and recommendations on airborne fine 
particulate matter (PM10) in S.E. Chicago. 
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Figure 1. Southeast Chicago study area: major industries and PM10 ambient air sampling 
sites. 
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Air quality was measured at two sites in the study area: Bright Elementary School at 10740 
S.Calhoun, from October 1985 to August 1987, and Washington Elementary School at 3611 
E. 114 Street, from December 1987 to June 1988. The locations of these sites and major 
industries are shown (Figure 1). A recent dispersion model study (Crowder et al., 1989) 
recommends both sites as suitable to monitor local (within the study area) sources of air 
pollution. 

The third site is in a rural area near Champaign, EL, 8 km south of Bondville, EL. This site, 
chosen to be representative of regional air quality, is also used in several national air and 
precipitation monitoring programs. There are no point sources within 10 km, and the site 
is at least 50 km downwind of urban areas during times of prevailing northwest and 
southwest winds. In this location, concentrations of airborne toxic air pollutants should be 
representative of conditions in most of rural Illinois and provide an estimate of the 
contribution of regional background to urban pollution. Samples were collected between 
September 1985 and September 1987. 

METHODSMS.do





Fe, Ni, Cu, Zn, Mo anode, Mo filter, SO KeV, 200 Μ amps 
Ga, As, Se, Br, 
Rb, Sr, Ba, La, 
Hg. Pb 

Filter blanks were analyzed and an average blank spectrum was used as a background 
subtraction for each sampled filter. The raw analytical data were reviewed by a laboratory 
supervisor at the contract laboratory before processing was completed. Sample data were 
then corrected for spectral interferences, particle size, and deposit absorption effects. 

NAA Methods 

Elemental concentrations for the air filters were determined using the following NAA 
procedures. The support ring around the filter was removed before analysis. Earlier work 
by Sweet and Gatz (1988) showed the TeflonR filter support ring to be contaminated with 
Cr, Mn, and Sb. Removal of the ring was not necessary with XRF, because only the center 
portion of the filter (1 square centimeter (cm2)) is analyzed. For the short-lived 
radioisotopes (Al, Ba, Ca, Cu, In, Sr, Mn, V, Ti, Cl, and Na), filters were inserted in an 
acid-washed 7 cubic centimeter (cc) polyethylene vial placed in rabbit carriers, and 
irradiated for a period of five minutes at a flux of 1.5 * 1012 neutrons per square-centimeter 
per second (n/cm2/s). After the return of the carrier, the filter was removed from the vial 
and carefully placed in an inert acid-washed 7 cc polyethylene vial and presented for 
counting in front of a hyper-pure germanium counter. Typical delay times were of the order 
of 4 to 5 minutes. Samples were counted for 10 minutes. Deadtime corrections were 
evaluated by using a 60 hertz (Hz) pulser. Variations in neutron flux were monitored using 
sulfur standards every few hours throughout the day. Flux variations (1 percent or less) were 
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Receptor Modeling Methods 

Receptor modeling is an approach by which sources contributing to air quality are identified 
from the perspective of the receptor, in this project, filters from the dichotomous sampler. 
Source identification, using a receptor modeling approach, is possible, assuming that a 
measured element is linearly additive and follows the principle of conservation of mass, such 
that the concentration per unit volume of air at the receptor site is set equal to the sum of 
the contribution of various sources. Using Fe as an example, these assumptions may be 
expressed, relative to the receptor, as: 

A number of specific calculations and models exist within the broader receptor modeling 
approach (e.g.,wind trajectory analysis, enrichment factors, and chemical mass balance), and 
each may rightfully be described as a receptor model. The approach used in this study is 
described as "stepwise" or "weight-of-evidence" where a series of models are followed, 
designed with a degree of redundancy, such that source identification is supported by a 
number of observations, model outputs, or both. 

Quality Assurance 

For XRF, the laboratory's approach is based on a well-established, validated standard 
operating procedure (SOP), an x-ray analysis QA plan, and validated standards. The SOP 
has been validated through numerous numero0.256 Tc 104l25pTc (s)Tj
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Table 1. Filter Blanks



Filter
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Filter Samples 

Figure 2. Continued. 

9 



Filter Samples 

Figure 2. Concluded. 
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SOURCE IDENTIFICATION 

Site Reconnaissance and Emission Inventories 

As a first step in identifying PM10 sources, industrial facilities and emission inventories were 
examined for S.E. Chicago. This included a site reconnaissance (see Figure 1), a review of 
a recent dispersion model (Crowder et al., 1989), and a review of inventoried emissions 
(IEPA, 1987; Kong et al., 1990). Based on these reviews, local iron and steel and related 
industries were identified as major sources of airborne particulate matter, and based on 
dispersion model outputs, show localized impacts. A number of the mills and related 
industries were closed or at reduced operating an



Figure 3. Southeast Chicago airshed box model. 
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Table 2. Receptor Modeling Estimates of Industrial Primary Emissions 

Industry City Contribution Authors 

Industrial Philadelphiaa <5% of PM10 Dzubay et al. (1988) 

Industrial Newark 7% of PM15 Morandi et al. (1987) 

Industrial Portland 5% of TSP Cooper and Watson (1979) 

Steel Detroit 12% of CPMb Wolff and Korsog (1985) 

Steel Chicagoc 4% of TSP Gatz (1975) 

Steel N/A 3% to 18% of TSP Lucas and Casuccio (1987) 

aPrimary emissions from five major stationary sources. 
bCPM = particles ranging in size from 2.5 μm to 10 μm. 
cSampling sites were located upwind (prevailing direction) from steel mill sources. 

inventory for toxic air pollutants



Table 3. Contribution of Inventoried Sources to S.E. Chicago Average Ambient Trace 
Element Concentrations 

PM10 
Element Inventoried Modeled Ambient Percentc 

Emissions* Concentrationsb Concentrations 
(tons/yr) (ng/m3) (ng/m3) 

Al 257-429 329-548 496 66-110 
Si n.a. n.a. n.a. n.a. 
P 38-63 58-96 100 58-96 
S 563-939 719-1199 2273 32-53 
CI 255-425 326-543 582 56-93 
K n.a n.a. 232 n.a. 
Ca n.a. n.a. 1097 n.a. 
Ti 15-25 19-32 38 50-84 
V 12-20 16-26 7 229-371 
Cr 55-92 71-118 11 645-1073 
Mn 49-82 62 - 104 86 72 - 121 
Fe 485 - 809 632 - 1053 1233 51-85 
Ni 22-36 28-46 5 560-920 
Cu 320-533 409-681 15 2727-4540 
As 201-335 257-428 3 8567-14267 
Zn 206 - 343 263 - 438 166 158 - 264 
Se 5 - 9 7-12 3 233-400 
Cd 60-100 77-128 6 1283-2133 
Sn 14-24 19-31 11 173-282 
Sb 55-92 71-118 11 645-1073 
Ba 10-16 13 - 21 10 130 - 210 
Br 8-14 11-18 11 100-164 
Rb n.a. n.a. n.a. n.a. 
Sr 2 - 4 3 - 5 5 60-100 
Pb 349-581 445-742 127 350-584 

Notes: a Calculated PM10 inventory ranges from 60-100 percent TSP inventoried 
emissions, as reported by Kong et al. (1990). 
b Modeled PM10 concentrations calculated from the PM10 inventory range. 
c Percent of average ambient concentration explained by inventoried 
emissions. 
n.a. not available 
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PM-10 CONCENTRATIONS (ug/m3) 

Figure 4. Range of PM10 mass concentrations: comparison of a regional site with S.E. 
Chicago. 
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Figure 6. Variability of fine and coarse PM10 mass concentrations by season. 
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Average Trace Element Concentrations 

The trace element database used in this work consists of weather data and analytical results 
from 104 pairs of fine and coarse dichotomous filters. Filter samples were collected between 
September 1985 and June 1988. Those selected for analysis generally coincided with steady 
wind direction (standard deviation ≤ 20o). However, it was attempted to include a 
representative sample of all wind directions and meteorological conditions in the database. 
Figures 7 and 8 break down the analyzed filter samples by wind direction and season. The 
distribution of the analyzed filters closely reflects average wind directions for S.E. Chicago. 



Figure 7. Southeast Chicago Alter samples by season 
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Figure 8. Southeast Chicago filter samples by wind direction (A) and compared with an 
annual wind rose (B). 
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Table 4. Average Concentrations of PM10 Mass and Trace Elements1 

Element Regional2 S.E. Chicago 
Fine Coarse Fine Coarse 

Notes: For each row, values with different superscripts are statistically different from 
each other at the 90 percent confidence level using a one-tailed T-test. 
n.d. not determined. 
1 PM10 in μg/m3, elements in nanograms per cubic meter (ng/m3). 
2 Filters collected at a rural se



Carbon Determinations 

No carbon determinations were made for filters collected at the Bright School site, but 
sampling at the Washington School site included airborne carbon measurements. The glass 
fiber filters were collected in sequence with the TeflonR filters. As a percentage of aerosol 
mass, total carbon varied from 14.5 to 53.0percent, averaging 25.2percent (Figure 9). There 
appears to be no significant difference between fine and coarse filters, averaging 24.0 and 
26.5 percent, respectively. Within S.E. Chicago, two major sources of carbon are diesel 
exhaust and coal. 

Seasonal Trends 

The elemental data were examined for seasonal, weekly, and diurnal trends. No clear trends 
could be found with the exception of a few elements. This is consistent with the fact that 
urban sources of airborne particles such as industrial stack emissions and vehicular traffic 
are fairly constant. An interesting pattern was notable for two elements. The seasonal 
variation of fine chloride (Cl) shows high levels coinciding almost exactly with the snow 
season and road salt application (Figure 10). Road dust samples from Buffalo, NY, show 
a similar seasonal pattern for Cl (Vermette et al., 1991). This illustrates the potential for 
resuspension of fine particles by vehicular traffic. A second pattern was observed for 
airborne Si and Ti, with higher concentrations present during the spring (Figure 11). These 
particles presumably come from uncontaminated wind-blown dust from the surrounding 
region. 

Wind Trajectory Analysis 

Analysis of the data, based on wind direction, yields information on the sources and the 
types of emissions. Several steel mills are near the Bright weekly nea seasona wer

es bm a n  th data os  incTm0 Tw-0.254 Tz-0.292cles presumab32.824c(l) Tj4.905149 Tc( S.E) Tj01Tc(d) Tj24Tj4.520ea.365 Tc( a) Tj0 l airborn,649 Tw-sw0.0.198 Tc( A) Tj0 Tceekly



Filter Samples 

Figure 9. Carbon mass expressed as a



CHLORIDE 

Figure 10. Seasonal variability of fine airborne chloride (Cl) concentrations. 

25 



Figure 11. Seasonal variability



Table 5. Airborne Fine Particle Concentrations Sorted by Wind Sectors for the Bright 
School Site 

Note: PM10 in μg/m3,



Table 6. Airborne Coarse Particle Concentrations Sorted by Wind Sectors for the Bright 
School Site 

Note: PM10 in μg/m3, elements in ng/m3. 
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Table 7. Airborne Fine Particle Concentrations Sorted by Wind Sectors for the Washington 
School Site 

Note: PM10 in μg/m3, elements in ng/m3. 
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Table 8. Airborne Coarse Particle Concentrations Sorted by Wind Sectors for the 
Washington School Site 

Note: PM10 in μg/m3, elements in ng/m3. 
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where X is the concentration of the element of interest, and C is the concentration of the 
reference element. The usefulness of EF calculations is based on the assumption that similar 
elemental ratios (ratio = 1) found



Figure 12. Average enrichment factors for S.E. Chicago using a crustal reference material. 



Figure 13. Enrichment factors for S.E. Chicago plotted by wind direction using a crustal 
reference material. 
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Figure 13. Concluded. 
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FINE PARTICLES 

Figure 14. Enriched (EF>5) elements plotted by wind sector using regional air 
concentrations as a reference material. 
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but also to other steel industry sources



Table 9 . Fine Particle Factor Loadings for S.E. Chicagoa 

Elements Identified Sources Factor Loadingsb Percent Variancec 

FACTOR 1 Steel industry stack 39.2 
Ni 0.90 
Zn 0.85 
V 0.80 
Mn 0.78 
Cr 0.75 
Fe 0.68 
Pb 0.61 
Ca 0.40 
Wind direction -0.40 

FACTOR 2 Regional sulfate and coal 13.4 
Mass 0.90 
Br 0.70 
Se 0.69 
P 0.65 
S 0.62 
Cl 0.50 
K 0.40 

FACTOR 3 Unknown 8.9 
Fe 0.40 
Br 0.56 
Cl 0.68 
Rb 0.75 
K 0.72 
Cu 0.40 
Wind direction -0.60 

FACTOR 4 Soil 7.7 
Si 0.82 
Al 0.81 
Ti 0.72 
Cu 0.52 
Ca 0.40 
Wind speed 0.50 

FACTOR 5 Steel industry dust 5.0 
Mn 0.58 
Cr 0.55 
Fe 0.40 
Rb 0.41 
Sr 0.79 
Ca 0.50 

Note: a Varimax rotation (percent of variance explained by factor analysis) = 74.2%. 
b Only factor loadings ≥ 0.4 are included. 
c Percent of the variance explained by the factor. 
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Table 10. Coarse Particle Factor Loadings for S.E. Chicagoa 

Elements Identified Sources Factor Loadingsb Percent Variancec 

FACTOR 1 Soil 46.5 
K 0.92 
Si 0.91 
Al 0.91 
Ti 0.80 
Ca 0.68 
Sr 0.67 
Mass 0.61 
P 0.61 
V 0.50 
Fe 0.50 
Rb 0.49 
FACTOR 2 Road dust 11.9 
Mass 0.42 
Zn 0.80 
Ni 0.80 
Pb 0.65 
Cu 0.64 
V 0.60 
Br 0.52 
Cr 0.50 
Fe 0.50 
S 0.40 
FACTOR 3 Industrial yards 6.7 
Ca 0.55 
Sr 0.45 
Mass 0.44 
Ni 0.44 
Cu 0.44 
V 0.50 
Br 0.44 
Mn 0.65 
Cr 0.55 
Fe 0.55 
Se 0.45 
Rb 0.45 
S 0.50 
Wind direction -0.80 
FACTOR 4 Coal dust 6.0 
Se 0.70 
Wind speed 0.60 
Rb 0.58 

Rb .(5 ) Tj1 0 0 24515 Tc992Tj0 Tc(e) rian0 Tf0 Ts-0.243 Tac( 6.) 90 Tc(riance) Tj/F9 6.50 Tc(R) oadings



errors in a few individual filters will not be as significant when averaged into a large 
database. Although all sources with an impact





AVERAGE CONDITIONS 
Coarse Particles 

Figure 15. Southeast Chicago source contribution estimates: coarse particle average 
conditions. 
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STEEL MILL FETCH 
Coarse Particles 

Figure 16. Southeast Chicago source contribution estimates: coarse particle steel fetch. 
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Table 13. Southeast Chicag



URBAN FETCH 
Coarse Particles 

Figure 17. Southeast Chicago source contribution estimates: coarse particle urban fetch. 
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Table 14. Southeast Chicago Elemental Source Contributions — Coarse Particle Urban Fetch 

Percent 

Element C* Regional Coal Steel Road Road Vehicle 
M Yard Yard Dust Salt Exhaust 

Al 1.31 71 18 9 2 0 0 
Si 1.25 81 11 6 2 0 0 
S 1.15 84 12 1 3 0 0 
Cl 1.00 5 0 0 1 93 1 
K 1.02 86 8 6 1 0 0 
Ca 0.99 51 3 37 8 0 0 
Ti 0.72 71 21 4 3 0 0 
V 0.58 69 19 7 5 0 0 
Cr 0.48 50 14 16 21 0 0 
Mn 1.05 25 7 43 25 0 0 
Fe 0.99 27 14 53 4 0 1 
Ni 1.16 60 12 19 4 0 4 
Cu 2.14 63 28 1 2 0 5 
Zn 0.97 49 0 41 4 0 5 
Se 0.33 91 0 0 9 0 0 
Br 3.21 11 0 1 0 0 88 
Pb 0.83 14 0 17 13 0 55 
C 1.01 0 91 4 3 0 0 

Notes: * Calculated/measured 
R-square = 0.97 
Chi-square = 3.52 
Percent mass = 108.0 



A sensitivity test was conducted, removing carbon from both the coal yard and diesel 
sources, and only the coal yard source was accepted by CMB. The identification of a vehicle 
exhaust source in only the urban fetch may be attributed to controls on leaded fuels and the 
relative increased influence of other Pb sources (e.g., steel industry). Table 14 presents a 
breakdown by element for the urban fetch. 

Fine Particle CMB 

Modeled results are presented as source contribution estimates (Figures 18-20) and as 
elemental contribution estimates (Tables 15-17). Both source and elemental contribution 
estimates are reported as a percent of calculated mass. Model statistics show a poorer 
agreement between measured and calculated coarse PM10, underpredicting mass by 30 
percent. This may be attributed to the absence of important modeled elements/compounds 
(e.g.,N03) and the lackk



AVERAGE CONDITIONS 
Fine Particles 

Figure 18. Southeast Chicago source contribution estimates: fine particle average 
conditions. 
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Table 15. Southeast Chicago Elemental Source Contributions — Fine Particle Mean Conditions 

Percent 

Element C* Sulfate Coal Incin- Diesel Steel Steel Se Road Oil 
M Yard erator Mills Yard Salt Burning 

Notes: * Calculated/measured 
R-square = 0.97 
Chi-square



STEEL MILL FETCH 
Fine Particles 

Figure 19. Southeast Chicago source contribution estimates: fine particle steel fetch. 
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Table 16. Southeast Chicago Elemental Source Contributions — Fine Particle Steel Fetch 

Percent 

Element C* Sulfate Coal Steel Steel Oil 
M Yard Mills Yard Burning 

Al 1.00 0 43 39 17 1 
Si 1.13 0 35 48 16 1 
S 1.00 88 2 8 0 2 
Cl 1.23 0 0 100 0 0 
Ca 1.24 0 4 74 20 1 
Ti 0.87 0 23 72 4 1 
V 0.86 0 2 31 1 67 
Cr 1.01 0 1 99 0 0 
Mn 0.79 0 1 97 2 0 
Fe 0.47 0 9 80 12 1 
Ni 1.95 0 1 19 0 79 
Cu 0.37 0 21 72 4 4 
C 1.01 0 48 51 3 0 

Notes: * Calculated/measured 
R-square = 0.98 
Chi-square = 4.40 
Percent mass = 71.5 

K, Zn, Se, Br and Pb were omitted as fitting species because they provided a poor fit. Given the dominance 
of the steel mill stack emissions, the omitted species are likely incorrectly defined in that profile. 



URBAN FETCH 
Fine Particles 

Figure 20. Southeast Chicago source contribution estimates: fine particle urban fetch. 
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Table 17. Southeast Chicago Elemental Source Contributions — Fine Particle Urban Fetch 

Percent 

Element C* Sulfate Coke Steel Incin- Diesel Road 
M Dust Mill erator Salt 

Al 1.05 0 96 0 3 1 0 
Si 0.95 0 96 1 3 0 0 
S 1.00 96 3 0 1 0 0 
Cl 1.00 0 1 0 19 1 79 
K 0.4S 0 43 2 56 0 0 
Ca 1.07 0 92 4 1 3 0 
Ti 1.59 0 93 2 1 4 0 
V 0.32 0 90 9 0 0 0 
Cr 0.65 0 50 41 5 5 0 
Mn 0.94 0 49 50 1 0 0 



CONCLUSION AND RECOMMENDATIONS 

Source identification of PM10 in a complex urban airshed requires
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APPENDIX A 
SURFACE DUST PROFILE: METHODOLOGIES 



Table 1A. MRI Dust Samples Selected for Suspension 

Facility Sample Code* Description 

Calumet Industrial Disposal 01U010 Unpaved Haul Road 
01U004 & 01U013 Unpaved Haul Road 

Paxton II Landfill 02U001# Unpaved Haul Road 
02U002 Unpaved Haul Road 

Land & Lakes No. 3 Landfill 03U004 Unpaved Haul Road 
03S010 Clay Stockpile 
03S011# Landfill Sample 

Land & Lakes No. 1 ,2, & 04U007 Unpaved Haul Road 
Dolton Landfill 04S004 Flyash 

04P184 Paved Haul Road 
Acme Steel Furnace Plant 0SU014 Unpaved Haul Road 

05P014 Paved Haul Road 
05S002 Tilden Pellets 
OSSOOS Wabash Pellets 
0SS101 Flue Dust 

Acme Steel Coke Plant 06U004# Coal Yard Road 
06S003 Coal 
06P001 Paved Haul Road 

Acme Steel Riverdale Plant 07P008 Paved Haul Road 
07S301 Limedust 
07S302# BOF Dust 

Hechett Riverdale Plant 08U00304P181



Figure 1A. Lake Calumet study area showing locations of sampled facilities and other 
industries. 
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were sampled along a transverse strip with a Hoover Model S vacuum fitted with a tare-
weighed vacuum bag. Storage piles were sampled with a pointed shovel to a nominal depth 
of 15 cm. 

The 29 profiles represent suspected sources of fugitive dust in the Lake Calumet and 
McCook areas. However, the analyzed samples represent only 13 percent of the collected 
samples, and thus an important dust source may have inadvertently been omitted. It should 
also be noted that the elemental profiles reported from this project represent concentrations 
at the time of collection and that many industrial facilities use chemical dust suppressants 
(especially in the dust control season March-October), which may or may not be reflected 
in the elemental profiles. 

Suspension 

The surface dust samples were sieved to < S3 μm to be used as the bulk material 
for suspension and deposit onto filters. The suspension chamber consists of a



Figure 2A. Schematic of the dust suspension apparatus. 
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is based on the atomic excitation of electrons with the subsequent emissions of characteristic 
x-rays when electrons from higher levels fill the void spaces. The method of NAA is based 
on the measurement of induced radioactivity where the radioactive decay m e a s u r e m e n



The dust profiles presented in this report are predominantly from XRF 
determinations. Important inputs were made by NAA for element
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